Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi thương của phép chia ax3+bx2+c cho x-2 là f(x) ta đc
ax3+bx2+c=(x-2).f(x)
Đẳng thức trên luôn đúng với mọi x
* với x=2 thì 8a+4b+c=0 (1)
gọi thương của ax3+bx2+c cho x2-1 là q(x) ta có
ax3+bx2+c=(x-1)(x+1).q(x)+2x+5
đẳng thức trên luôn đúng
* với x=1 thì a+b+c=7 (2)
* với x=-1 thì -a+b+c=3 (3)
từ (1) , (2) và (3) ta có
a=2 ,b=7 , c=-2
gọi thương của phép chia ax3+bx2+c cho x-2 là f(x) ta đc
ax3+bx2+c=(x-2).f(x)
Đẳng thức trên luôn đúng với mọi x
* với x=2 thì 8a+4b+c=0 (1)
gọi thương của ax3+bx2+c cho x2-1 là q(x) ta có
ax3+bx2+c=(x-1)(x+1).q(x)+2x+5
đẳng thức trên luôn đúng
* với x=1 thì a+b+c=7 (2)
* với x=-1 thì -a+b+c=3 (3)
từ (1) , (2) và (3) ta có
a=2 ,b=7 , c=-2
bớt xàm đi Đỗ Mai Linh ơi.ng ta chat hay ko vc ng ta.đây là nơi để học chứ éo pk nơi để ns linh tinh trên này đâu
5, a,
Ta có ƯCLN(a,b)=6 \(\Rightarrow\hept{\begin{cases}a_1.6=a\\b_1.6=b\end{cases}}\) với (a1;b1) = 1
=> a+b = a1.6+b1.6 = 6(a1+b1) = 72
=> a1+b1 = 12 = 1+11=2+10=3+9=4+8=5+7=6+6 (hoán vị của chúng)
Vì (a1,b1) = 1
=> a1+b1 = 1+11=5+7
* Với a1+b1 = 1+11
+) TH1: a1 = 1; b1=11 => a =6 và b = 66
+) TH2: a1=11; b1=1 => a=66 và b = 6
* Với a1+b1 = 5+7
+)TH1: a1=5 ; b1=7 => a=30 và b=42
+)TH2: a1=7;b1=5 => a=42 và b=30
Vậy.......
1, a=ƯCLN(128;48;192)
2, b= ƯCLN(300;276;252)
3, Gọi n.k+11=311 => n.k = 300
n.x + 13 = 289 => n.x = 276
=> \(n\inƯC\left(300;276\right)\)
4, G/s (2n+1;6n+5) = d (d tự nhiên)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}\Rightarrow6n+5-\left(6n+3\right)⋮d}\)
\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+1 lẻ => 2n+1 không chia hết cho 2
=> d khác 2 => d=1 => đpcm
có gì pm
buồn ngủ