K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2022

Thay `k=1` vào pt ta có;
\(x^2-2.\left(1-1\right)x+1-4=0\\ \Leftrightarrow x^2-2.0x-3=0\\ \Leftrightarrow x^2-3=0\\ \Leftrightarrow x^2=3\\ \Leftrightarrow x=\pm\sqrt{3}\)

27 tháng 4 2022

dbrr

27 tháng 4 2022

khó vl

22 tháng 1 2022

a/ Xét phương trình :  \(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)

Ta có :

\(\Delta'=b'^2-ac=\left(k-1\right)^2-2\left(k-2\right)=k^2-2k+1-2k+4=k^2-4k+5=\left(k-2\right)^2+1>0\forall k\)

\(\Leftrightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi k

b/ Theo định lí Vi - ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2\left(k-1\right)\\x_1.x_2=\dfrac{c}{a}=2\left(k-2\right)\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=4\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow x_1^2+x_2^2+4\left(k-2\right)=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+4k-8=16\)

\(\Leftrightarrow4\left(k-1\right)^2-4\left(k-2\right)+4k-8=16\)

\(\Leftrightarrow4k^2-8k+4-4k+8+4k-8=0\)

\(\Leftrightarrow k=\pm3\)

Vậy....

 

 

30 tháng 7 2021

\(a,< =>\Delta=0\)

\(=>[-\left(k+1\right)]^2-4\left(2+k\right)=0\)

\(< =>k^2+2k+1-8-4k=0\)

\(< =>k^2-2k-7=0\)

\(\Delta1=\left(-2\right)^2-4\left(-7\right)=32>0\)

\(=>\left[{}\begin{matrix}k1=\dfrac{2+\sqrt{32}}{2}\\k2=\dfrac{2-\sqrt{32}}{2}\end{matrix}\right.\)

b,\(< =>\Delta'=0< =>\left(k-1\right)^2-\left(k+9\right)=0\)

\(< =>k^2-2k+1-k-9=0< =>k^2-3k-8=0\)

\(\Delta=\left(-3\right)^2-4\left(-8\right)=41>0\)

\(=>\left[{}\begin{matrix}k1=\dfrac{3+\sqrt{41}}{2}\\k2=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\)

a) \(\text{Δ}=\left[-\left(k+1\right)\right]^2-4\cdot1\cdot\left(k+2\right)\)

\(=k^2+2k+1-4k-8\)

\(=k^2-2k-7\)

Để phương trình có nghiệm kép thì Δ=0

\(\Leftrightarrow k^2-2k-7=0\)(1)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-7\right)=4+28=32\)

Vì Δ>0 nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}k_1=\dfrac{2-4\sqrt{2}}{2}=1-2\sqrt{2}\\k_2=\dfrac{2+4\sqrt{2}}{2}=1+2\sqrt{2}\end{matrix}\right.\)

NV
4 tháng 3 2022

Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)

Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)

\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k

\(\Rightarrow\)Pt đã cho có nghiệm

4 tháng 3 2022

em đọc ko hiểu gì hết

\(\text{Δ}=\left(2k\right)^2-4\cdot\left(k^2-k\right)\)

\(=4k^2-4k^2+4k\)

=4k

Để phương trình có nghiệm thì \(4k\ge0\)

hay \(k\ge0\)

Ta có: \(\Delta=-7k^2-42k+49\)

Để phương trình có nghiệm kép \(\Leftrightarrow\Delta=-7k^2-42k+49=0\) \(\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-7\end{matrix}\right.\)

  Vậy ...

20 tháng 5 2021

Cái phương trình đầu tiên ở đâu ra vậy ? 

8 tháng 3 2021

b) là gì vậy bạn , viết nốt đi rồi mình làm cho

11 tháng 1

b) Để phương trình có hai nghiệm phân biệt:

\(\Delta'>0\Leftrightarrow\left(-2\right)^2+1.\left(3k-1\right)>0\)

\(\Leftrightarrow3k+3>0\Leftrightarrow k< -1\)

Vậy k < -1 thì phương trình có hai nghiệm phân biệt

c) Với k  < -1 phương trình có hai nghiệm phân biệt:

\(x_1=2+\sqrt{3k+3}\) và \(x_2=2-\sqrt{3k+3}\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=1-3k\end{matrix}\right.\)

d) \(\left(x_1+x_2\right).3x_1x_2=4.3.\left(1-3k\right)=12-36k\)

 

12 tháng 1

CT denta: denta=b2-4ac