Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm:
x2 – 2x + m – 1 = 0 tương đương (x – 1)2 = 2 – m (1)
Để parabol không cắt trục Ox thì phương trình (1) vô nghiệm hay 2 – m < 0 hay m > 2
Chọn B.
Phương trình hoành độ giao điểm là:
\(x^2+mx+\left(m+1\right)^2=-x^2-\left(m+2\right)x-2\left(m+1\right)\)
=>\(x^2+mx+\left(m+1\right)^2+x^2+\left(m+2\right)x+2m+2=0\)
=>\(2x^2+\left(2m+2\right)x+\left(m^2+4m+3\right)=0\)
\(\Delta=\left(2m+2\right)^2-4\cdot2\cdot\left(m^2+4m+3\right)\)
\(=4m^2+16m+16-8m^2-32m-24\)
\(=-4m^2-16m-8=-4\left(m^2+4m+2\right)\)
\(=-4\left(m^2+4m+4-2\right)\)
\(=-4\left[\left(m+2\right)^2-2\right]\)
Để (P1) cắt (P2) tại hai điểm thì \(\Delta>=0\)
=>\(\left(m+2\right)^2-2< =0\)
=>\(\left(m+2\right)^2< =2\)
=>\(-\sqrt{2}< =m+2< =\sqrt{2}\)
=>\(-\sqrt{2}-2< =m< =\sqrt{2}-2\)
\(P=\left|x_1\cdot x_2-3\left(x_1+x_2\right)\right|\)
\(=\left|\dfrac{m^2+4m+3}{2}-3\cdot\dfrac{-2m-2}{2}\right|\)
\(=\left|\dfrac{m^2+4m+3+6m+6}{2}\right|=\left|\dfrac{m^2+10m+9}{2}\right|>=0\)
Dấu '=' xảy ra khi |m2+10m+9|=0
=>(m+1)(m+9)=0
=>\(\left[{}\begin{matrix}m=-1\left(nhận\right)\\m=-9\left(loại\right)\end{matrix}\right.\)
Phương trình hoành độ giao điểm:
`mx-3=x^2`
`<=>x^2-mx+3=0` (1)
(P) cắt (d) tại 2 điểm phân biệt `<=>` PT (1) có 2 nghiệm phân biệt.
`<=> \Delta >0`
`<=>m^2-3>0`
`<=> m<-\sqrt3 \vee m>\sqrt3`
Viet: `{(x_1+x_2=m),(x_1x_2=3):}`
`|x_1-x_2|=2`
`<=>(x_1-x_2)^2=4`
`<=> (x_1+x_2)^2-4x_1x_2=4`
`<=>m^2-4.3=4`
`<=>m= \pm 4` (TM)
Vậy....
Phương trình hoành độ giao điểm là:
\(x^2-2\left(m-1\right)x+m^2-m=0\)
\(\Delta=\left(2m-2\right)^2-4\left(m^2-m\right)\)
\(=4m^2-8m+4-4m^2+4m=-4m+4\)
Để (P) cắt Ox tại 2 điểm phân biệt thì \(\Delta>0\)
=>-4m+4>0
=>-4m>-4
=>m<1
Phương trình hoành độ giao điểm là:
\(x^2-2x+4=2mx-m^2\)
=>\(x^2-2x+4-2mx+m^2=0\)
=>\(x^2-x\left(2m+2\right)+m^2+4=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+4\right)\)
\(=4m^2+8m+4-4m^2-16=8m-12\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>8m-12>0
=>8m>12
=>\(m>\dfrac{3}{2}\)
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m-2\right)}{1}=2m+2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4}{1}=m^2+4\end{matrix}\right.\)
\(x_1^2+2\left(m+1\right)x_2=3m^2+16\)
=>\(x_1^2+x_2\left(x_1+x_2\right)=3m^2+12+4\)
=>\(x_1^2+x_1\cdot x_2+x_2^2=3x_1x_2+4\)
=>\(x_1^2-2x_1x_2+x_2^2=4\)
=>\(\left(x_1-x_2\right)^2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=4\)
=>\(\left(2m+2\right)^2-4\left(m^2+4\right)=4\)
=>\(4m^2+8m+4-4m^2-16=4\)
=>8m-12=4
=>8m=16
=>m=2(nhận)
Xét phương trình hoành độ giao điểm: x2 – 2x + m – 1 = 0
Để parabol cắt Ox tại hai điểm phân biệt có hoành độ dương thì phương trình có hai nghiệm dương hay
Chọn A.