K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: góc BEA=1/2*180=90 độ

Xét ΔBMN vuông tại M và ΔBEA vuông tại E có

góc MBN chung

=>ΔBMN đồng dạng với ΔBEA

=>BM/BE=BN/BA

=>BE*BN=BA*BM=BC^2

=>AC^2+BE*BN=AB^2=4*R^2

a) Xét (O) có

CD là dây cung(C,D∈(O))

B là điểm chính giữa của \(\stackrel\frown{CD}\)(gt)

Do đó: \(\stackrel\frown{CB}=\stackrel\frown{BD}\)

\(sđ\widehat{CB}=sđ\widehat{BD}\)(1)

Xét (O) có 

\(\widehat{BMD}\) là góc nội tiếp chắn cung BD(gt)

nên \(\widehat{BMD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BD}\)(Định lí góc nội tiếp)(2)

Xét (O) có 

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC(gt)

nên \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\widehat{CB}\)(Định lí góc nội tiếp)(3)

Từ (1), (2) và (3) suy ra \(\widehat{BMD}=\widehat{BAC}\)(đpcm)

 

31 tháng 1 2021

thanks nhìu nha leuleu