K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có

CD là dây cung(C,D∈(O))

B là điểm chính giữa của \(\stackrel\frown{CD}\)(gt)

Do đó: \(\stackrel\frown{CB}=\stackrel\frown{BD}\)

\(sđ\widehat{CB}=sđ\widehat{BD}\)(1)

Xét (O) có 

\(\widehat{BMD}\) là góc nội tiếp chắn cung BD(gt)

nên \(\widehat{BMD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BD}\)(Định lí góc nội tiếp)(2)

Xét (O) có 

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC(gt)

nên \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\widehat{CB}\)(Định lí góc nội tiếp)(3)

Từ (1), (2) và (3) suy ra \(\widehat{BMD}=\widehat{BAC}\)(đpcm)

 

31 tháng 1 2021

thanks nhìu nha leuleu

9 tháng 3 2018

HS tự chứng minh

28 tháng 4 2023

loading...

꧁༺ml78871600༻꧂  
8 tháng 9 2018

a, HS tự chứng minh

b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA

c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AKBN nên có ĐPCM

Chứng minh tứ giác EKBH nội tiếp, từ đó có  A K F ^ = A B M ^

d, Lấy P và G lần lượt là trung điểm của AC và OP

Chứng minh I thuộc đường tròn (G, GA)