K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)

\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)

\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)

\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=3-\left(1-\frac{1}{8}\right)\)

\(A=3-\frac{5}{8}\)

\(A=\frac{19}{8}\)

31 tháng 3 2017

\(H=\frac{1}{a^2}+\frac{2}{a^3}+\frac{3}{a^4}+...+\frac{n}{a^{n+1}}\)

\(H=\frac{a^{n-1}+2.a^{n-2}+...+\left(n-1\right).a+n}{a^{n+1}}\)

\(H=\frac{1}{a^{n+1}}.\left[\left(a^{n-2}+a^{n-2}+a+1\right)+\left(a^{n-2}+a^{n-3}+...+a+1\right)+...+\left(a+1\right)+1\right]\)

Đặt \(Sn=1+a+a^2+...+a^n\)=>\(a.Sn=a+a^2+a^3+...+a^n+a^{n+1}\)

=> \(a.Sn-Sn=a^{n+1}-1\)=>\(Sn.\left(a-1\right)=a^{n+1}-1\)=>\(Sn=\frac{a^{n+1}-1}{a-1}\)

Khi đó \(H=\frac{1}{a^{n+1}}.\left[\frac{a^n-1}{a-1}+\frac{a^{n-1}-1}{a-1}+...+\frac{a^2-1}{a-1}+\frac{a-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^n+a^{n-1}+...+a+1-\left(n+1\right)}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^n+a^{n-1}+...+a+1}{a-1}-\frac{n-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^{n+1}-1}{\left(a-1\right)^2}-\frac{n-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^{n+1}}{\left(a-1\right)^2}-\frac{1}{a-1}-\frac{n+1}{a-1}\right]\)

\(H=\frac{1}{\left(a-1\right)^2}-\frac{1}{a^{n+1}.\left(a-1\right)^2}-\frac{n+1}{a^{n+1}.\left(a-1\right)}< \frac{1}{\left(a-1\right)^2}\)(đpcm)

Xong rồi đó , phù.......

13 tháng 4 2017

Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:

a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).

Thay vào điều kiện ta được:

 qa1b = qc1d

\(\Leftrightarrow\)a1b = c1d

\(\Rightarrow\)  d\(⋮\)a1

\(\Rightarrow\)d = d1a1

Thế ngược lại ta được: b = d1c1

Từ đây ta có:

A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n

= (a​1 n + c1 n)(q n + d1 n)

Vậy A là hợp số

13 tháng 4 2017

\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)

\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)

\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)

\(D< 4+2.\left(1-\frac{1}{2015}\right)\)

\(D< 6\)

mink chỉ làm được vậy thôi bạn ạ, sorry

19 tháng 4 2016

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}

19 tháng 4 2016

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)

8 tháng 4 2018

Ta có : 

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)

\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)

\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên : 
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1\)

\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\) 

\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(n-2< S< n-1\)

Vì \(n>3\) nên \(S\) không là số tự nhiên 

Vậy \(S\) không là số tự nhiên 

Chúc bạn học tốt ~ 

15 tháng 4 2017

1/

\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

n-31-12-24-4
n42517-1

Vậy...

15 tháng 4 2017

câu 2 dễ ẹt