Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé!
\(S=\frac{3}{4}+\frac{8}{9}+...+\frac{n^2-1}{n^2}\)
\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)
\(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< n-1\)(1)
+ Vì \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\frac{1}{2^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}\)
Nên S > n - 1 - ( 1 - 1/n) = n - 2 + 1/n > n - 2 ( vì 1/n > 0) (2)
Từ (1),(2) => n - 2 < S < n - 1 mà n \(\in\)N, n \(\ge\)2 => đpcm
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
\(S=1-\frac{1}{4}+1-\frac{1}{9}+......1-\frac{1}{n^2}=n-\left(\frac{1}{4}+\frac{1}{9}+....\frac{1}{n^2}\right)\Rightarrow S< n\)
mặt khác \(S=n-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)>n-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}\right)=n-\left(1-\frac{1}{n}\right)\)
suy ra \(S>n-1+\frac{1}{n}\Rightarrow S>n-1\)
vậy ta có \(n-1< S< n\)nên S không thể là số nguyên.
Ta có:
S=1−14 +1−19 +......1−1n2 =n−(14 +19 +....1n2 )⇒S<n
mặt khác S=n−(122 +132 +...+1n2 )>n−(11.2 +12.3 +...+1n(n−1) )=n−(1−1n )
suy ra
S>n−1+1n ⇒S>n−1
vậy ta có n−1<S<nnên S không thể là số nguyên.
Ta có :
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)
gọi B là biểu thức trong ngoặc
Lại có :
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)
\(\Rightarrow A>98\)\(\left(2\right)\)
từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)
vậy A không phải là số tự nhiên
phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà
1/
\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy...
Ta có :
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)
\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)
\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên :
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(A< 1-\frac{1}{n}< 1\)
\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\)
\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(n-2< S< n-1\)
Vì \(n>3\) nên \(S\) không là số tự nhiên
Vậy \(S\) không là số tự nhiên
Chúc bạn học tốt ~