K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

27 tháng 12 2023

Ta có : A = \(\dfrac{2024}{x-99}\) => A = 2024 : (x - 99) =. x - 99 ∈ Ư(2024) ∈ {1;-1;2.....,2024;-2024}   (Nhiều quá ghi không hết )

a, Để A có giá trị lớn nhất thì x - 99 phải là giá trị nhỏ nhất và x - 99 ∈ N*

=> x - 99 = 1 => x = 100

b,Để A có giá trị nhỏ nhất thì x - 99 phải là giá trị lớn nhất và x - 99 phải là số nguyên âm

=> x - 99 = -1 => x = 98

26 tháng 12 2023

gap voi ah

10 tháng 5 2022

n+4 là ước của 2n+3 \(\Rightarrow2n+3⋮n+4\)

\(\dfrac{2n+3}{n+4}=\dfrac{2n+8-5}{n+4}=\dfrac{2\left(n+4\right)-5}{n+4}=2-\dfrac{5}{n+4}\)

=> n+4 phải là ước của 5

\(\Rightarrow n+4=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-9;-5;-3;1\right\}\)

 

21 tháng 11 2015

3n+14 =3(n+1) +11 chia hết cho n+1 => 11 chia hết cho n+1

n+1 thuộc U(11) ={1;11}

+ n+1 =1 => n =0 loại

+n+1 =11 => n =10

Vậy n =10

10 tháng 1

cứu tôi

 

10 tháng 1

what ?

 

13 tháng 11 2023

          Dùng phương pháp phản chứng em nhé.

Giả sử tồn tại một số chính phương n thỏa mãn đề bài khi đó

Vì n là số chính phương nên n chia 3 chỉ có thể dư 1 hoặc không dư (tính chất của số chính phương)

Mặt khác ta lại có: Tổng các chữ số của n là 2024

2024 : 3 = 674 dư 2

⇒  A : 3 dư 2 (trái với giải thiết) 

Vậy điều giả sử là sai nên không tồn tại số tự nhiên n nào thỏa mãn đề bài.

            Kết luận n \(\in\) \(\varnothing\) 

 

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:

Tổng các chữ số của $n$ là $2024$. Ta có $2+0+2+4=8$ nên $n$ chia cho $9$ dư $8$.

Mà 1 số chính phương khi chia cho $9$ dư $0,1,4,7$ nên không tồn tại $n$ thỏa mãn đề.