K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

Gọi I là trung điểm của AD, K là giao điểm của CI và BD. Kẻ ME ^ BD tại E, CF ^ BD tại F.

Có  B N = 1 3 B D , E M = 1 2 C F S B M N = 1 2 E M . B N = 1 2 . 1 2 C F . 1 3 B D = 1 6 S B C D = 1 12 S ⇒ S M N D C = 1 2 S − 1 12 S = 5 12 S

22 tháng 12 2016

S=1/4cm2

11 tháng 4 2017

1/4 nha

2 tháng 2 2018

a) Ta có AB // CD (gt)

Suy ra AM // CP    (1)

Lại có AM = AB/2; CP = CD/2    (2)

Từ (1) và (2) suy ra AMCP là hình bình hành

Suy ra AP // CM hay ES // FR.

Tương tự ta cũng chứng minh được tứ giác BQDN là hình bình hành nên BQ // DN. Suy ra EF // RS.

Vậy tứ giác EFRS là hình bình hành

b) Đặt PS = x. Suy ra CR = 2x (tính chất đường trung bình)

Từ đó suy ra RF = ES = AE = 2x

Suy ra: ES = 2AP/5 => SEFRS = 2SAMCP/5

Vì SAMCP = SABCD/2 nên SEFRS = SABCD/2

21 tháng 12 2016

tự vẽ hình nhé bạn

a) xét tg ABMN có

AN = BM ( bạn tự c/m)

AN // BM ( bạn tự c/m)

==> ABMN hbh

mà AN = AB ==> ABMN hthoi ==> góc P = 90 độ

==> KB // DM ( cug vuông vs PM)

==> MDKB hthang

b) c/m t2 ta có NMDC hthoi ==> góc Q = 90 độ

Xét tam giác ADM có AN = ND = NM ( ABMN hthoi)

==> ADM tam giác vuông ( Đ.lý Py ta go đảo)

==> góc M = 90 độ

ta có góc P = góc M = góc Q = 90 độ ==> PMQN hcn

c) Shcn PMQN = PM . MQ = 8 . 5 = 40 cm2

d) ( tự c/m :P)

dc thì like nhé :)))

21 tháng 12 2016

thanks bạn nhé

haha

15 tháng 8 2017

xin lỗi nhé mình ko biết

16 tháng 8 2017

A B C D E F G H I K N M Q P

a) - Xét tứ giác AMCI , có : 

+ AM // CI ( GT )

+ AM = CI ( GT )

=> AMCI là hình bình hành ( 2 cạnh đối song song và bằng nhau )

=> AI // MC  hay EH // FG (1)

- XÉt tứ giác BNDK có : 

+ BN // DK ( GT )

+ BN = DK ( GT : N , K lần lượt là trung điểm BC , DA và BC = DA )

=> BNDK là hình bình hành ( 2 cạnh đối song song và bằng nhau )

=> BK // DN hay EF // HG ( 2) 

- Từ 1 và 2 ta có : EFGH là hình bình hành ( các cặp cạnh đối song song )

- Kẻ FQ vuông góc AI tai Q

=> \(S_{EFGH\:}=FQ.EH\)

- Mặt khác : \(S_{AMCI}=FQ.AI\)( Vì MC // AI nên FQ là đường cao chung )

=>   \(\frac{S_{EFGH\:}}{S_{AMCI}}=\frac{FQ.EH}{FQ.AI}=\frac{EH}{AI}\)(3)

- LẠi có : 

+ Xét tam giác AHD có : KE // DH và K là trung điểm của AD nên => E là trung điểm của AH hay AE = EH 

+ Xét tam giác DCG có :  HI // CG , I là trung điểm của DC nên => H là trung diểm của DG => HI là đường trung bình của tam giác DCG  => \(HI=\frac{1}{2}.CG\)mà CG = FG = EH nên \(HI=\frac{1}{2}.EH\)

=>  \(AI=AE+EH+HI=2.EH+\frac{1}{2}.EH=\frac{5.EH}{2}\)

Thay vào 3 , ta được :

\(\frac{S_{EFGH\:}}{S_{AMCI}}=\frac{EH}{AI}=EH:\frac{5.EH}{2}=\frac{2.EH}{5.EH}=\frac{2}{5}\)

b) - Kẻ AP vuông góc với CD tại Q

- Ta có : \(S_{ABCD}=AP.CD\)và \(S_{AMCI}=AP.CI\)

=>  \(\frac{S_{AMCI}}{S_{ABCD}}=\frac{AP.CI}{AP.CD}=\frac{CI}{CD}=\frac{1}{2}\Rightarrow S_{AMCI}=\frac{1}{2}.S_{ABCD}\)

Từ ý a , ta có : \(S_{EFGH\:}=\frac{2}{5}.SAMCI=\frac{2}{5}.\frac{1}{2}.S_{ABCD}=\frac{1}{5}.S_{ABCD}\)

MÀ ABCD có diện tích là S nên \(S_{EFGH\:}=\frac{1}{5}.S\)