Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D A B ^ = 360 0 − 140 0 + 90 0 = 130 0
a) D A C ^ + A C F ^ = 140 0 + 40 0 = 180 0
Suy ra AD//CF( vì có cặp góc trong cùng phía bù nhau).
b) D A B ^ + A B E ^ = 130 0 + 50 0 = 180 0
Suy ra AD//BE( vì có cặp góc trong cùng phía bù nhau)
c, có ^DAB = ^FAC = 90
^DAB + ^BAC = ^DAC
^FAC + ^BAC = ^FAB
=> ^DAC = ^FAB
xét tg DAC và tg BAF có : AD = AB (gt) và AF = AC (Gt)
=> tg DAC = tg BAF (C-g-c)
=> BF = DC (đn)
a: Xét ΔBED vuông tại E và ΔCFD vuông tại F có
DB=DC
góc BDE=góc CDF
=>ΔBED=ΔCFD
b: Xét tứ giác BECF có
BE//CF
BE=CF
=>BECF là hbh
=>CE//BF
ban tu ve hinh nha
Ta có : Góc DAB = góc CAE = 90 độ => góc DAB + góc BAC = góc CAE + góc BAc
hay góc DAC = góc EAB
Xét tam giác ADC và tam giác ABE có :
AD = AB ; AC = AE ; góc DAC = góc EAB
=> tam giác ADC = tam giác ABE => DC = BE
Vì tam giác ADC = tam giác ABE nên góc AEB = góc ACD
mà góc AKE = góc BKC (đối đỉnh) , góc AKE + góc AEB = 90 độ
=> góc BKC + góc AEB = 90 độ hay góc BKC + góc ACD = 90 độ
=> góc DC vuông góc BE
Giải:
a) Vẽ tia đối của AD là AO
Ta có:
\(\widehat{DAC}+\widehat{CAO}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow140^0+\widehat{CAO}=180^0\)
\(\Leftrightarrow\widehat{CAO}=40^0\)
\(\Leftrightarrow\widehat{CAO}=\widehat{C}\left(=40^0\right)\)
\(\Leftrightarrow AD//CF\) (Vì có hai góc so le trong bằng nhau)
b) Ta có:
\(\widehat{CAO}+\widehat{BAO}=\widehat{BAC}\)
\(\Leftrightarrow40^0+\widehat{BAO}=90^0\)
\(\Leftrightarrow\widehat{BAO}=50^0\)
\(\Leftrightarrow\widehat{BAO}=\widehat{B}\left(=50^0\right)\)
\(\Leftrightarrow AD//BE\) (Vì có hai góc so le trong bằng nhau)
Vậy ...
Câu a chứng minh theo hai góc trong cung phía bù nhau cũng được