Cho hình vẽ biết:

  A B ⊥...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

D A B ^ = 360 0 − 140 0 + 90 0 = 130 0

 a)  D A C ^   +   A C F ^ = 140 0 + 40 0 = 180 0

Suy ra AD//CF( vì có cặp góc trong cùng phía bù nhau).

b)  D A B ^   +   A B E ^ = 130 0 + 50 0 = 180 0

Suy ra AD//BE( vì có cặp góc trong cùng phía bù nhau)

26 tháng 6 2018

Giải:

a) Vẽ tia đối của AD là AO

Ta có:

\(\widehat{DAC}+\widehat{CAO}=180^0\) (Hai góc kề bù)

\(\Leftrightarrow140^0+\widehat{CAO}=180^0\)

\(\Leftrightarrow\widehat{CAO}=40^0\)

\(\Leftrightarrow\widehat{CAO}=\widehat{C}\left(=40^0\right)\)

\(\Leftrightarrow AD//CF\) (Vì có hai góc so le trong bằng nhau)

b) Ta có:

\(\widehat{CAO}+\widehat{BAO}=\widehat{BAC}\)

\(\Leftrightarrow40^0+\widehat{BAO}=90^0\)

\(\Leftrightarrow\widehat{BAO}=50^0\)

\(\Leftrightarrow\widehat{BAO}=\widehat{B}\left(=50^0\right)\)

\(\Leftrightarrow AD//BE\) (Vì có hai góc so le trong bằng nhau)

Vậy ...

Câu a chứng minh theo hai góc trong cung phía bù nhau cũng được

8 tháng 8 2016

F C A D B E 1 2 3 x

Kéo dài DA

Ta có:
\(\widehat{A3} + \widehat{C} = 140^O + 40^O = 180^O\)

mà 2 góc này nằm ở vị trí trong cùng phía

\(\Rightarrow\) CF // DA (dhnb)

 

 

\(\widehat{A3} + \widehat{A1} = 180^O\) (kề bù)

\(140^O + \widehat{A1} = 180^O (\widehat{A3} = 140^O(gt))\)

\(\widehat{A1} = 180^O - 140^O\)

\(\widehat{A1} = 40^O\)

 

\(\widehat{A1} + \widehat{A2} = \widehat{BAC}\) (Ax nằm giữa 2 tia AB và AC)

\(40^O + \widehat{A2} = 90^O (\widehat{A1} = 40^O(cmt); AB \perp AC (gt))\)

\(\widehat{A2} = 90^O - 40^O\)

\(\widehat{A2} = 50^O\)

 

\(\Rightarrow\)\(\widehat{A2} = \widehat{B} = 50^O\)

mà 2 góc này nằm ở vị trí so le trong.

\(\Rightarrow\)   BE // DA (dhnb)

mà  CF // DA (cmt)

\(\Rightarrow\) CF // BE (Định lí 3 trong bìa từ vuông góc đến song song)

6 tháng 6 2017

Ta có: \(\dfrac{a}{b}\)\(\dfrac{c}{d}\left(b>0,d>0\right)\)

a) Giả sử: +) \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\) \(ad=bc\) (nhân chéo)

\(\Rightarrow\) nếu \(\dfrac{a}{b}< \dfrac{c}{d}\) thì \(ad< bc.\)

b) Giả sử \(ad=bc\) \(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\) nếu \(ad< bc\) thì \(\dfrac{a}{b}< \dfrac{c}{d}.\)

6 tháng 6 2017

a)\(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow\dfrac{a.d}{b.d}< \dfrac{c.b}{d.b}\Rightarrow ad< bc\)

b)\(ad< bc\Leftrightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}.\)

25 tháng 10 2017

Để \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) thì a(b+d) < b(a+c)

<=> ab + ad < ba + cb

<=> ad < cb

<=> \(\dfrac{a}{b}< \dfrac{c}{d}\)

Để \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) thì (a+c)d < (b+d)c

<=> ad + cd < bc + dc

<=> ad < bc

<=> \(\dfrac{a}{b}< \dfrac{c}{d}\)

Chúc bạn học tốt!

23 tháng 10 2017

bài giải

26 tháng 8 2021

\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)

Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)

Ta có : \(a=b.k\)  

            \(b=c.k\)

\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)

\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)

Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)

Hok tốt~

AH
Akai Haruma
Giáo viên
27 tháng 7 2024

Lời giải:

$b.b=ac\Rightarrow \frac{b}{c}=\frac{a}{b}$.
Đặt $\frac{b}{c}=\frac{a}{b}=k\Rightarrow b=ck; a=bk$.

Khi đó:

$\frac{a}{c}=\frac{bk}{c}=\frac{ck.k}{c}=k^2(1)$

Và:

$\frac{(a+2011b)^2}{(b+2011c)^2}=\frac{(bk+2011b)^2}{(ck+2011c)^2}$

$=\frac{b^2(k+2011)^2}{c^2(k+2011)^2}=\frac{b^2}{c^2}=\frac{(ck)^2}{c^2}=k^2(2)$

Từ $(1);(2)$ ta có đpcm.

 

30 tháng 8 2017

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)

= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)

= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)

\(\dfrac{51}{2.50}=\dfrac{51}{100}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)

Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)

Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)

b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:

\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)

\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)

\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)

\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)

\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)

24 tháng 2 2017

Tự lực suy nghĩ mà làm một lần đi, đừng hỏi nữa.

24 tháng 2 2017

Mình có hỏi nữa đâu!