Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Tập xác định: D = ℝ \ 1 2 ⇒ Hàm số y = m x + 1 2 x − 1 liên tục và đơn điệu trên 1 ; 3
⇒ a . b = y 1 . y 3 = m + 1 1 . 3 m + 1 5 = 1 5
⇔ m + 1 3 m + 1 = 1 ⇔ 3 m 2 + 4 m = 0 ⇔ m = 0 m = − 4 3
Vậy có 2 giá trị m thỏa mãn.
Đáp án C
Ta có y = - 1 + 2 - 3 . 2 sin x c o s x + 2 cos 2 x = 2 - 3 . sin 2 x + cos 2 x .
Áp dụng bất đẳng thức Bunhicopxki, có
2 - 3 . sin 2 x + cos 2 x 2 ≤ 2 - 3 2 + 1 2 . sin 2 2 x + cos 2 2 x = 8 - 4 3
Suy ra y 2 ≤ 8 - 4 3 ⇔ 8 - 4 3 ≤ y ≤ 8 - 4 3 . Vậy M + N + 2 = 2.
Đáp án C
Ta có: y = − 1 + 2 − 3 .2 sin x cos x + 2 cos 2 x
= 2 − 3 . sin 2 x + cos 2 x
Áp dụng bất đẳng thức Bunhiacopxki, có:
2 − 3 . sin 2 x + cos 2 x 2 ≤ 2 − 3 2 + 1 2 . sin 2 2 x + cos 2 2 x = 8 − 4 3
Suy ra y 2 ≤ 8 − 4 3 ⇔ − 8 − 4 3 ≤ y ≤ 8 − 4 3 .
Vậy M + N + 2 = 2
Đáp án D
Từ bảng biến thiên suy ra: