Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
- Lấy đối xứng phần đồ thị hàm số y = f(x) nằm phía dưới trục hoành lên phía trên trục hoành ta được đồ thị hàm số y = |f(x)| (như hình bên). - Số nghiệm của phương trình |f(x)| = m là số giao điểm của đồ thị hàm số y = |f(x)| với đường thẳng y = m. Phương trình |f(x)| = m có 6 nghiệm thực phân biệt ⇔ 1 < m < 2.
Chọn D.
Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.
Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5
Đáp án C
Phương pháp:
- Vẽ đồ thị hàm số y = f x từ đồ thị hàm số y = f x : giữ nguyên phần đồ thị phía trên trục hoành và lấy đối xứng phần đồ thị phía dưới qua trục hoành.
- Điều kiện để phương trình f x = 2 m 2 − m + 3 có 6 nghiệm phân biệt là đường thẳng y = 2 m 2 − m + 3 cắt đồ thị hàm số y = f x tại 6 điểm phân biệt.
Cách giải:
Ta có đồ thị hàm số y = f x .
Lúc này, để phương trình f x = 2 m 2 − m + 3 có 6 nghiệm phân biệt thì đường thẳng y = 2 m 2 − m + 3 cắt đồ thị hàm số y = f x tại 6 điểm phân biệt.
Chú ý khi giải:
HS thường nhầm lẫn cách vẽ các đồ thị hàm số y = f x và y = f x , hoặc ở bước giải bất phương trình kết hợp nghiệm sai dẫn đến chọn sai đáp án.
Đáp án D
Đồ thị hàm số y = f x đối xứng với đồ thị hình vẽ qua trục hoành
Phương trình f x = m có 6 nghiệm thực phân biệt khi 3 < m < 4