K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2015

A B O M H K m n a b x y

Kẻ  MH; MK lần lượt vuông góc với Ox; Oy. Đặt MH = b; MK = a; HA = m; KB = n

+) Tam giác BKM đồng dạng với tam giác MHA (g- g) => BK / KM = MH / HA => n/a = b/ m => ab = m.n

a) S(AOB) = OA.OB/ 2 

Ta có: OA = a + m ; OB = b + n

=> OA. OB = (a + m).(b + n) = ab + an + bm + mn = (ab + mn) + (an + bm)

= 2ab + (an + bm) \(\ge\) 2ab + \(2\sqrt{an.bm}\) = 2ab + \(2\sqrt{\left(ab\right)^2}\) = 4ab = hằng số ( M cố định nên a.b = MK.MH không đổi)

Dấu "=" xảy ra <=> an = bm => (an)2 =  an.bm = (ab).(mn) = (mn)2 => a = m => H là trung điểm của OA

Vậy S(AOB) nhỏ nhất bằng 4ab khi H là trung điểm của OA

=> Vị trí đường thẳng d: d đi qua M và A, trong đó: A thuộc Ox sao cho H là trung điểm của OA

b) OA + OB = a + m + b + n = (a+ b) + (m + n) \(\ge\) a+ b + \(2\sqrt{mn}\) = a+ b + \(2\sqrt{ab}\) = \(\left(\sqrt{a}+\sqrt{b}\right)^2\) (vì m.n = ab)

Dấu "=" xảy ra <=> m = n => ab = n2

vậy OA + OB nhỏ nhất bằng \(\left(\sqrt{a}+\sqrt{b}\right)^2\) khi n2 = ab

+) Xác định vị trí của d sao cho n2 = ab = KB2

A B O M H K m n a b x y a P D

Cách dựng: 

- Dựng đường tròn đường kính OK 

- Trên đoạn OK , dựng KD = a. Qua D kẻ đường vuông góc với OK cắt đường tròn đường kính OK tại P

- Dựng  đường tròn tâm K , bán kính KP cắt Oy tại B

- Đường thẳng đi qua B và M chính là đường thẳng d cần xác định

Chứng minh: Áp dụng hệ thức lượng trong tam giác vuông OPK có: KP2 = KD. KO = a.b

Mà KP = KB = n => n2 = ab

Vậy....

1 tháng 3 2018

 Đặt AC = x; BD = y (x, y > 0)

Ta có \(\Delta ACM\sim\Delta BMD\left(g-g\right)\Rightarrow\frac{AC}{MB}=\frac{AM}{BD}\)

\(\Rightarrow AC.BD=AM.MB=const\Rightarrow xy=c=const\)

\(S_{MCD}=S_{ACDB}-S_{ACM}-S_{MBD}=\frac{\left(x+y\right)\left(AM+MB\right)}{2}-\frac{x.AM}{2}-\frac{y.MB}{2}\)

\(=\frac{x.MB+y.AM}{2}\ge\sqrt{xy.MB.AM}=\sqrt{c^2}=c\)

Dấu bằng xảy ra khi x.MB = y.AM, lại có \(xy=MB.AM\Rightarrow\hept{\begin{cases}x=AM\\y=MB\end{cases}}\)

Vậy giá trị nhỏ nhất của \(S_{CMD}=c\left(đvdt\right)\) xảy ra khi AC = AM; BD = BM.

1 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Linhllinh - Toán lớp 9 - Học toán với OnlineMath

18 tháng 2 2016

Giúp mình câu C với

10 tháng 10 2019

a) dễ dàng chứng minh được MD2= MC2 = MA.MB ( bằng cách kẻ đường thẳng từ M qua O và chứng minh tam giác đồng dạng)

MC2=MA.MB => tam giác MAC đồng dạng với tam giác MCB => \(\frac{MA}{MC}=\frac{AC}{BC}\)(1)

MD2=MA.MB => tam giác MAD đồng dạng với tam giác MDB => \(\frac{MA}{MD}=\frac{AD}{BD}\)(2)

TỪ (1) và (2) => \(\frac{AC}{BC}=\frac{AD}{BD}\)=> AC.BD=AD.BC

b)

xét tam giác vuông MOE với đường cao OC; Đặt OM=x; 

\(\frac{1}{OE^2}+\frac{1}{OM^2}=\frac{OM^2+OE^2}{OM^2.OE^2}=\frac{ME^2}{OC^2.ME^2}\)=\(\frac{1}{OC^2}\)=>\(\frac{1}{OE^2}+\frac{1}{x^2}=\frac{1}{R^2}=>OE=\frac{x.R}{\sqrt{x^2-R^2}}\)

Tam giác MCO=tam giác MDO( vì OC=OD;OM cạnh chung và góc MCO=góc MDO=90o) => góc CMO = góc DMO 

tam giác MEF có MO vừa là đường cao vừa là phân giác nên MO cũng là đường trung tuyến của EF => EF=2OE

diện tích tam giác MEF là \(\frac{1}{2}OM.\)EF=OE.OM=\(\frac{x.R}{\sqrt{x^2-R^2}}x\)=R.\(\frac{x^2}{\sqrt{x^2-R^2}}\)\(\ge R\).R\(\sqrt{2}\)=R2\(\sqrt{2}\)

Thật vậy \(\frac{x^2}{\sqrt{x^2-R^2}}\ge2\sqrt{R}< =>\frac{x^4}{x^2-R^2}\ge4R\)<=> (x2-2R)2\(\ge0\)(đúng)

=> diện tích MEF nhỏ nhất khi x2=2R <=> x=OM =\(\sqrt{2R}\)hay M là giao của (O;\(\sqrt{2R}\)) và AB (có 2 điểm M thỏa mãn)