Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(=\frac{a+b+c+d}{a+b+c+d}=1\).
\(\frac{a}{a+b+c}+\frac{c}{c+d+a}< \frac{a}{a+c}+\frac{c}{c+a}=\frac{a+c}{c+a}=1\)
\(\frac{b}{b+c+d}+\frac{d}{d+a+b}< \frac{b}{b+d}+\frac{d}{d+b}=\frac{b+d}{d+b}=1\)
Suy ra đpcm.
Áp dụng tính chất tỉ số ta có: \(\frac{a+b+d}{a+b+c+d}>\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\left(1\right)\)
Tương tự: với b,c rồi cộng vế theo vế có ĐPCM
Để \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)
\(\Leftrightarrow\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)
\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)
\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)
Ta có : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}\left(1\right)\)(Áp dụng BĐT Cô-si)
\(\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\left(b+d\right).\frac{4}{a+b+c+d}\left(2\right)\)(Áp dụng BĐT Cô-si)
Từ (1) và (2) \(\Rightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)
\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4\)(Điều phải chứng minh)
Áp dụng BĐT Svác - xơ.
\(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)
\(=\frac{a^2}{ba+ca}+\frac{b^2}{cb+db}+\frac{c^2}{dc+ac}+\frac{d^2}{ad+bd}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{ba+ca+bd+db+dc+ac+ad+bd}\)(1)
Xét: \(\left(a+b+c+d\right)^2-2\left(ba+ca+bd+db+dc+ac+ad+bd\right)\)
\(=a^2+b^2+c^2+d^2-2bd-2ac\)
\(=\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
=> \(\left(a+b+c+d\right)^2\ge2\left(ba+ca+bd+db+dc+ac+ad+bd\right)\)
=> \(\frac{\left(a+b+c+d\right)^2}{ba+ca+bd+db+dc+ac+ad+bd}\ge2\)(2)
Từ ( 1); (2) => \(F\ge2\)
Dấu "=" xảy ra <=> a = b = c = d.
Với a,b,c,d dương, chứng minh rằng \(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
đây là dạng mở rộng của nesbit
Áp dụng bất đẳng thức Bunhiacopski :
\(\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right].F\ge\left(a+b+c+d\right)^2\)
Tương đương \(F\ge\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\)
Ta có : \(\left(a+b+c+d\right)^2\ge4\left(a+d\right)\left(b+c\right)\)
\(\left(a+b+c+d\right)^2\ge4\left(a+b\right)\left(c+d\right)\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(2\left(a+b+c+d\right)^2\ge4\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)
Suy ra \(\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\ge\frac{4}{2}=2\)
Vậy ta có điều phải chứng minh
bạn @dcv thêm phần dấu "=" xảy ra \(\Leftrightarrow a=c;b=d\)
Với đề này thì bạn chỉ cần áp dụng tính chất của dãy tỉ số bằng nhau
Sau đó sẽ có thêm một tỉ số mới và bạn lấy tỉ số đó so sánh vs tỉ số cũ là được
Chúc bạn học tốt
@@
Có thể trình bày hộ mình dc ko