Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Svác - xơ.
\(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)
\(=\frac{a^2}{ba+ca}+\frac{b^2}{cb+db}+\frac{c^2}{dc+ac}+\frac{d^2}{ad+bd}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{ba+ca+bd+db+dc+ac+ad+bd}\)(1)
Xét: \(\left(a+b+c+d\right)^2-2\left(ba+ca+bd+db+dc+ac+ad+bd\right)\)
\(=a^2+b^2+c^2+d^2-2bd-2ac\)
\(=\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
=> \(\left(a+b+c+d\right)^2\ge2\left(ba+ca+bd+db+dc+ac+ad+bd\right)\)
=> \(\frac{\left(a+b+c+d\right)^2}{ba+ca+bd+db+dc+ac+ad+bd}\ge2\)(2)
Từ ( 1); (2) => \(F\ge2\)
Dấu "=" xảy ra <=> a = b = c = d.
Để \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)
\(\Leftrightarrow\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)
\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)
\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)
Ta có : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}\left(1\right)\)(Áp dụng BĐT Cô-si)
\(\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\left(b+d\right).\frac{4}{a+b+c+d}\left(2\right)\)(Áp dụng BĐT Cô-si)
Từ (1) và (2) \(\Rightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)
\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4\)(Điều phải chứng minh)
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(=\frac{a+b+c+d}{a+b+c+d}=1\).
\(\frac{a}{a+b+c}+\frac{c}{c+d+a}< \frac{a}{a+c}+\frac{c}{c+a}=\frac{a+c}{c+a}=1\)
\(\frac{b}{b+c+d}+\frac{d}{d+a+b}< \frac{b}{b+d}+\frac{d}{d+b}=\frac{b+d}{d+b}=1\)
Suy ra đpcm.
dựa vào tính chất hoán vị của a,b,c,d
Đặt \(a\ge b\ge c\ge d\)
tacó :
\(\frac{a}{b+c}\ge\frac{a}{a+c},\frac{c}{a+d}\ge\frac{c}{a+c}\)\(\frac{b}{c+d}\ge\frac{b}{b+d},\frac{d}{a+b}\ge\frac{d}{b+d}\)
=>\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+d}+\frac{d}{a+b}\ge\frac{a}{a+c}+\frac{b}{b+d}+\frac{c}{a+c}+\frac{d}{b+d}=\frac{a+c}{a+c}+\frac{b+d}{b+d}=2\)(ĐPCM)
đây là dạng mở rộng của nesbit
Áp dụng bất đẳng thức Bunhiacopski :
\(\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right].F\ge\left(a+b+c+d\right)^2\)
Tương đương \(F\ge\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\)
Ta có : \(\left(a+b+c+d\right)^2\ge4\left(a+d\right)\left(b+c\right)\)
\(\left(a+b+c+d\right)^2\ge4\left(a+b\right)\left(c+d\right)\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(2\left(a+b+c+d\right)^2\ge4\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)
Suy ra \(\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\ge\frac{4}{2}=2\)
Vậy ta có điều phải chứng minh
bạn @dcv thêm phần dấu "=" xảy ra \(\Leftrightarrow a=c;b=d\)