K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

Để \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)

Ta có : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}\left(1\right)\)(Áp dụng BĐT Cô-si)

\(\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\left(b+d\right).\frac{4}{a+b+c+d}\left(2\right)\)(Áp dụng BĐT Cô-si)

Từ (1) và (2) \(\Rightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4\)(Điều phải chứng minh)

7 tháng 4 2019

Thank bạn Fire Sky very much ☺☺🙂☺☺!!

2 tháng 3 2019

\(bdt\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{a+d}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\left(\frac{a-b}{b+c}+1\right)+\left(\frac{b-c}{c+d}+1\right)+\left(\frac{c-d}{d+a}+1\right)+\left(\frac{d-a}{a+b}+1\right)\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{a+c}{d+a}+\frac{b+d}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(*)

Theo Cauchy-Schwarz:

\(\frac{1}{b+c}+\frac{1}{d+a}\ge\frac{4}{a+b+c+d};\frac{1}{c+d}+\frac{1}{a+b}\ge\frac{4}{a+b+c+d}\)

Khi đó:\(\left(\cdot\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}+\left(b+d\right).\frac{4}{a+b+c+d}=4\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

5 tháng 9 2017

Ta có :

\(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\) (1)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)( Cộng mỗi phân số vs 1 )

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\) (2)

Với a ,b ,c ,d là các số dương , áp dụng BĐT Svacsơ , ta có :

\(\hept{\begin{cases}\frac{1}{b+c}+\frac{1}{d+a}\ge\frac{4}{a+b+c+d}\\\frac{1}{c+d}+\frac{1}{a+b}\ge\frac{4}{a+b+c+d}\end{cases}}\)

Suy ra : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\frac{4\left(a+c\right)+4\left(b+d\right)}{a+b+c+d}\)

\(\Leftrightarrow\left(2\right)\)\(\Leftrightarrow\left(1\right)\)( Điều cần CM )

21 tháng 6 2019

người đăng bài mới học lớp 8 thì trong chương trình lớp 8 chưa đc học Svac-xơ đâu ạ .Nếu dùng cần cm ạ

NV
21 tháng 6 2019

Đặt vế trái là P, áp dụng AM-GM cho từng cặp:

\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge a\) ; \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) ; \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\) ; \(\frac{d^2}{a+d}+\frac{a+d}{4}\ge d\)

Cộng vế với vế:

\(P+\frac{a+b+c+d}{2}\ge a+b+c+d\Rightarrow P\ge\frac{a+b+c+d}{2}\)

\("="\Leftrightarrow a=b=c=d\)

11 tháng 5 2017

Ta có : (a+b)/(a+b+c)<(a+b)/(a+b+c+d) ; (b+c)/(b+c+d)<(b+c)/(a+b+c+d) ; (c+d)/(c+d+a)>(c+d)(a+b+c+d) ; (a+d)/(a+b+d)>(a+d)(a+b+c+d)

Cộng 4 bất đẳng thức trên rồi rút gọn vế phải sẽ ra kết quả như đề bài

Trên trường tui không nghĩ ra về nhà mới phát hiên ra được

11 tháng 5 2017

Cho mk hỏi bạn TMDuc va TNVuong thi cùng trường à. Sao lại có bài chung thế.