Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}.\)
=> \(\frac{a^{2020}}{c^{2020}}=\frac{b^{2020}}{d^{2020}}=\frac{\left(a+b\right)^{2020}}{\left(b+d\right)^{2020}}\)
Xong lại áp dụng tính chất dãy tỉ số = nhau \(\frac{a^{2020}}{c^{2020}}=\frac{b^{2020}}{d^{2020}}=\frac{a^{2020}-b^{2020}}{c^{2020}-d^{2020}}.\)
Kết hợp lại là ra nhé
Với điều kiện như đề bài
Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{\left(b-a\right)\left(b+a\right)+\left(a-c\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\)
Tướng tự:
\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\)
\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\)
Em nhớ làm tiếp nhé!
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Rightarrow\left[\left(a+d\right)+\left(b+c\right)\right]\left[\left(a+d\right)-\left(b+c\right)\right]-\left[\left(a-d\right)-\left(b-c\right)\right]\left[\left(a-d\right)+\left(b-c\right)\right]=0\)
\(\Rightarrow\left(a+d\right)^2-\left(b+c\right)^2-\left(a-d\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow a^2+d^2+2ad-b^2-c^2-2bc-a^2-d^2+2ad+b^2+c^2-2bc\)
\(\Rightarrow4ad-4bc\)
\(\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=> a=k\)x\(b\)
\(c=k\)x\(d\)
Rồi thay vào sẽ làm ra
CHÚC BẠN HOC
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có: \(\left(\frac{a-b}{c-d}\right)^4=\left(\frac{bk-b}{dk-d}\right)^4=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^4=\left(\frac{b}{d}\right)^4\) (1)
\(\frac{a^4+b^4}{c^4+d^4}=\frac{\left(bk\right)^4+b^4}{\left(dk\right)^4+d^4}=\frac{b^4.k^4+b^4}{d^4.k^4+d^4}=\frac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\frac{b^4}{d^4}=\left(\frac{b}{d}\right)^4\) (2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\left(đpcm\right)\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a-b}{c-d}\right)^4\) (1)
Ta lại có:
\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\) (2)
Từ (1);(2)\(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)
Áp dụng tính chất tỉ số ta có: \(\frac{a+b+d}{a+b+c+d}>\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\left(1\right)\)
Tương tự: với b,c rồi cộng vế theo vế có ĐPCM