Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a ∆ → = (2; 3; 2) và n α → = (2; −2; 1)
a ∆ → . n α → = 4 – 6 + 2 = 0 (1)
Xét điểm M 0 (-3; -1; -1) thuộc ∆ , ta thấy tọa độ M 0 không thỏa mãn phương trình của ( α ) . Vậy M 0 ∉ ( α ) (2).
Từ (1) và (2) ta suy ra ∆ // ( α ).
Chọn A
Cách 1: Ta có: B ∈ Oxy và B ∈ (α) nên B (a ; 2 – 2a ; 0).
đi qua M (-1 ; -2 ; -3) và có một véctơ chỉ phương là
Ta có: d ⊂ (α) nên d và Δ song song với nhau và cùng nằm trong mặt phẳng (α).
Gọi C = d ∩ (Oxy) nên
Gọi d’ = (α) ∩ (Oxy), suy ra d’ thỏa hệ
Do đó, d’ qua và có VTCP
Gọi φ = (Δ, d’) = (d, d’)
Gọi H là hình chiếu của C lên Δ. Ta có CH = 3 và
Cách 2: Ta có: đi qua M (-1 ; -2 ; -3) và có một VTCP là
Ta có: B = Δ ∩ (Oxy), Δ ⊂ (α) nên B ∈ (Oxy) ∩ (α) => B (a; 2 – a; 0)
Ta có: Δ // d và d (Δ, d) = 3 nên
Ta có: d ⊂ (α) nên d và ∆ song song với nhau và cùng nằm trong mặt phẳng (α).
d( α ,( α )) = d( M 0 ,( α ))
Vậy khoảng cách giữa đường thẳng α và mặt phẳng ( α ) là 2/3.