Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì KM<KN
nên M nằm giữa K và N
Xét ΔAKM có \(\widehat{AKM}=90^0\)
nên AM là cạnh huyền
=>AM là cạnh lớn nhất trong ΔAKM
=>AM>AK
Xét ΔAMK có \(\widehat{AMN}\) là góc ngoài tại đỉnh M
nên \(\widehat{AMN}=\widehat{MAK}+\widehat{MKA}=90^0+\widehat{MAK}>90^0\)
Xét ΔAMN có \(\widehat{AMN}>90^0\)
nên AN là cạnh lớn nhất trong ΔAMN
=>AN>AM
mà AM>AK
nên AN>AM>AK
a. Trên cùng nửa mặt phẳng bờ là đường thẳng AM
có góc BOC< MOC (70 độ<115 độ)
nên tia OB nằm giữa hai tia OM và OC
b.Vì tia OB nằm giữa hai tia OM và OC
nên góc MOB+ góc BOC= góc MOC
góc MOB= MOC - BOC
góc MOB= 115 - 70
góc MOB= 45 độ
vậy góc MOB= 45 độ
Trên cùng nửa mặt phẳng bờ là đường thẳng AM
có góc MOC< góc AOM ( 115 độ< 180 độ )
nên tia OC nằm giữa hai tia OA và OM
suy ra góc AOC + góc MOC = góc AOM
góc AOC = góc AOM - góc MOC
góc AOC = 180 độ - 115 độ
góc AOC =65 độ