Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VẾ TRÁI: (x-1)(x+1) / (x-2)(x+1)^2
Vế phải: Quy đồng sao cho có mẫu là (x-2)(x+1)^2
Suy ra: x^2-1 = A(x+1)^2+ B(x-2)+ C(x+1)(x-2)
Vế phải nhân từng vế rồi ra kết quả:
x^2(A+C) + x(2A + B- C) + A- 2B - 2C
Đối chiếu với vế trái ( x^2-1)
Suy ra ta dc hệ phương trình:
A+ C =1
A- 2B- 2C = -1
2A + B - C= 0
Giải hệ phương trình ra ta dc
A =1/3
B=0
C= 2/3
Biểu thức \(C = - \frac{2}{3}{x^2} + 7x - 4\) là tam thức bậc hai
Biểu thức A không là tam thức bậc hai vì chứa \(\sqrt x \)
Biểu thức B không là tam thức bậc hai vì chứa \({x^4}\)
Biểu thức D không là tam thức bậc hai vì chứa \({\left( {\frac{1}{x}} \right)^2}\)
a/ ĐKXĐ: \(x\ne\left\{1;3\right\}\)
\(\Leftrightarrow\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)
\(\Leftrightarrow x^2+2x-15=x^2-9\)
\(\Leftrightarrow2x=6\Rightarrow x=3\) (ktm)
Vậy pt vô nghiệm
b/ ĐKXĐ: \(x\ne1\)
\(\Leftrightarrow\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{x^2+x+1}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow x^2+x+1+2\left(x-1\right)=3x^2\)
\(\Leftrightarrow2x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\frac{1}{2}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm4\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{\left(x-4\right)\left(x+4\right)}+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow5x^2-80+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2+16=5x^2+2x\)
\(\Rightarrow x=8\)
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
Quy đồng vế phải, chỉ quan tâm tử số:
\(A\left(x+1\right)^2+B\left(x-2\right)+C\left(x+1\right)\left(x-2\right)\)
\(=Ax^2+2Ax+A+Bx-2B+Cx^2-Cx-2C\)
\(=\left(A+C\right)x^2+\left(2A+B-C\right)x+A-2B-2C\)
Đồng nhất các hệ số với tử số của vế trái ta được:
\(\left\{{}\begin{matrix}A+C=1\\2A+B-C=0\\A-2B-2C=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=\frac{1}{3}\\B=0\\C=\frac{2}{3}\end{matrix}\right.\)
Akai Haruma