K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019
Bạn tham khảo cách làm của mình tại link dưới (mình inbox riêng để khỏi phải gõ nhé) https://olm.vn/hoi-dap/detail/218733018604.html
21 tháng 7 2018

A B C M D

Vẽ BM cắt AC tại D. Vì M nằm trong tam giác ABC nên D nằm giữa A và C, ta có AC = AD + DC

Tam giác ABD có DB < AB + AD, =>

MB + MD < AB + AD (1)

Tam giác MDC có MC < DC + MD

Công (1) và (2) theo từng vế, ta được:

MB + MC + MD < AB + AD + DC + MD

=> MB + MC < AB + ( AD + DC )

=> MB + MC < AB + AC

Tương tự => MA + MB < AC + BC và MA + MC < AB + BC

=> MB + MC + MA + MB + MA + MC < AB + AC + AC + BC + AB + BC

=> 2(MA + MB +MC)<2(AB + AC + AB)

=> MA + MB + MC < AB + AC + AB (3)

Xét các tam giác MAB, MAC, MBC ta lần lượt có:

MA + MB > AB; MA + MC > AC; MB + MC > BC

=> MA + MB + MA + MC + MB + MC > AB + AC + BC

=> 2( MA + MB + MC) > AB + AC + BC

=> \(MA+MB+MC>\dfrac{AB+AC+BC}{2}\left(4\right)\)

Từ (3) và (4)

\(\Rightarrow\dfrac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)

22 tháng 7 2018

harumi05, hôm qua mất điện cả hôm nên ko trả lời, xin lỗi ví ko lên nha!

6 tháng 7 2019

B M I A C

a) Ta lần lượt xét:

  • Trong \(\Delta AMI\), ta có:

                              \(MA< IA+IM\Leftrightarrow MA+MB< IA+IM+MB\)

                             \(\Leftrightarrow MA+MB< IA+IB\)                (1)

  • Trong \(\Delta BIC\),ta có:

                              \(IB< CI+CB\Leftrightarrow IA+IB< IA+CI+CB\)

                              \(\Leftrightarrow IA+IB< CA+CB\)                 (2)

Từ (1), (2), ta nhận được  \(MA+MB< IA+IB< CA+CB,đpcm\)

b) Ta lần lượt xét:

  • Trong \(\Delta MAB\), ta có \(MA+MB>AB\left(3\right)\)
  • Trong \(\Delta MBC\), ta có \(MB+MC>BC\left(4\right)\)
  • Trong \(\Delta MAC,\)ta có \(MA+MC>AC\left(5\right)\)

Cộng theo vế (3),(4),(5), ta được:

\(2\left(MA+MB+MC\right)>AB+BC+AC\)

\(\Leftrightarrow MA+MB+MC>\frac{1}{2}\left(AB+BC+AC\right),đpcm.\)

Mặt khác dựa theo kết quả cua câu a), ta có:

\(MA+MB< CA+CB\left(6\right)\)

\(MB+MC< AB+AC\left(7\right)\)

\(MA+MC< BA+BC\left(8\right)\)

Cộng theo vế (6),(7),(8), ta được:

\(2\left(MA+MB+MC\right)< 2\left(AB+BC+AC\right)\)

\(\Leftrightarrow MA+MB+MC< AB+BC+AC,đpcm.\)

6 tháng 4 2022

ko nhìn thấy 

6 tháng 4 2022

là sao ?

 

áp dụng đ/lý bất đẳng thức ta có: MA < MI + IA

                                    => MA + MB < MI + IA + MB

                                   => MA + MB < IB + IA (1)

        tương tự ta có: IB < IC + BC

                        => IB + IA < IC + BC + IA

                       => IB + IA < AC + BC (2)

từ (1) và (2) => MA + MB < AC + BC (3)

tương tự ta cũng có: MA + MC < AB + BC (4)

                                 MB + MC < AB + AC (5)

cộng theo vế (3) ; (4) ; (5) ta có:

MA + MB + MA + MC + MB + MC < AC + BC+ AB + BC + AB + AC

2( MA + MB + MC) < 2( AB + AC + BC)

MA + MB + MC < AB + AC + BC ( vì cùng chia 2 vế cho 2) (6)

áp dụng đ/lý bất đẳng thức tam giác ta có:

AB < MA + MB

AC < MA + MC

BC < MC + MB

cộng theo vế của các bất đẳng thức trên ta có:

AB + AC + BC < MA + MB + MA + MC + MC + MB

AB + AC + BC < 2( MA + MB + MC)

AB + AC + BC / 2 MA + MB + MC ( chia cả 2 vế cho 2) (7)

từ (6) và (7) => AB + AC + BC / 2< MA + MB + MC < AB + AC + BC

vậy MA + MA + MC lớn hơn nửa chu vi và nhỏ hơn chu vi tam giác ABC

18 tháng 1 2022

đéo bt làm thì đừng có thể hiện

 

 

20 tháng 7 2017

A M B C Hình 45 (h.45) Xét \(\Delta ABM:\)MA+MB>AB (1)

Xét \(\Delta AMC:\) MA+MC>AC (2)

Xét \(\Delta BMC:\) MB+MC>BC (3)

Cộng từng vế (1), (2), (3):

2(MA+MB+MC)>\(\text{AB+AC+BC}\)

Suy ra :

MA+MB+MC>\(\dfrac{\text{AB+AC+BC}}{2}\)

30 tháng 3 2017

Theo bất đẳng thức trong tam giác:

MA+MB>AB

MB+MC>AC

MA+MC>AC

\(\Rightarrow2MA+2MB+2MC>AB+BC+AC\)

\(\Rightarrow MA+MB+MC>\dfrac{AB+BC+AC}{2}\)

30 tháng 3 2017

Rất cảm ơn cậu , ''trần hữu tuyển''

13 tháng 3 2019

Trong ΔAMB, ta có:

MA + MB > AB (bất đẳng thức tam giác) (1)

Trong ΔAMC, ta có:

MA + MC > AC (bất đẳng thức tam giác) (2)

Trong ΔBMC, ta có:

MB + MC > BC (bất đẳng thức tam giác) (3)

Cộng từng vế (1), (2) và (3), ta có:

MA + MB + MA + MC + MB + MC > AB + AC + BC

⇔ 2(MA + MB + MC) > AB + AC + BC

Vậy MA + MB + MC > (AB + AC + BC) / 2