Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ BM cắt AC tại D. Vì M nằm trong tam giác ABC nên D nằm giữa A và C, ta có AC = AD + DC
Tam giác ABD có DB < AB + AD, =>
MB + MD < AB + AD (1)
Tam giác MDC có MC < DC + MD
Công (1) và (2) theo từng vế, ta được:
MB + MC + MD < AB + AD + DC + MD
=> MB + MC < AB + ( AD + DC )
=> MB + MC < AB + AC
Tương tự => MA + MB < AC + BC và MA + MC < AB + BC
=> MB + MC + MA + MB + MA + MC < AB + AC + AC + BC + AB + BC
=> 2(MA + MB +MC)<2(AB + AC + AB)
=> MA + MB + MC < AB + AC + AB (3)
Xét các tam giác MAB, MAC, MBC ta lần lượt có:
MA + MB > AB; MA + MC > AC; MB + MC > BC
=> MA + MB + MA + MC + MB + MC > AB + AC + BC
=> 2( MA + MB + MC) > AB + AC + BC
=> \(MA+MB+MC>\dfrac{AB+AC+BC}{2}\left(4\right)\)
Từ (3) và (4)
\(\Rightarrow\dfrac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)
harumi05, hôm qua mất điện cả hôm nên ko trả lời, xin lỗi ví ko lên nha!
a) Ta lần lượt xét:
- Trong \(\Delta AMI\), ta có:
\(MA< IA+IM\Leftrightarrow MA+MB< IA+IM+MB\)
\(\Leftrightarrow MA+MB< IA+IB\) (1)
- Trong \(\Delta BIC\),ta có:
\(IB< CI+CB\Leftrightarrow IA+IB< IA+CI+CB\)
\(\Leftrightarrow IA+IB< CA+CB\) (2)
Từ (1), (2), ta nhận được \(MA+MB< IA+IB< CA+CB,đpcm\)
b) Ta lần lượt xét:
- Trong \(\Delta MAB\), ta có \(MA+MB>AB\left(3\right)\)
- Trong \(\Delta MBC\), ta có \(MB+MC>BC\left(4\right)\)
- Trong \(\Delta MAC,\)ta có \(MA+MC>AC\left(5\right)\)
Cộng theo vế (3),(4),(5), ta được:
\(2\left(MA+MB+MC\right)>AB+BC+AC\)
\(\Leftrightarrow MA+MB+MC>\frac{1}{2}\left(AB+BC+AC\right),đpcm.\)
Mặt khác dựa theo kết quả cua câu a), ta có:
\(MA+MB< CA+CB\left(6\right)\)
\(MB+MC< AB+AC\left(7\right)\)
\(MA+MC< BA+BC\left(8\right)\)
Cộng theo vế (6),(7),(8), ta được:
\(2\left(MA+MB+MC\right)< 2\left(AB+BC+AC\right)\)
\(\Leftrightarrow MA+MB+MC< AB+BC+AC,đpcm.\)
áp dụng đ/lý bất đẳng thức ta có: MA < MI + IA
=> MA + MB < MI + IA + MB
=> MA + MB < IB + IA (1)
tương tự ta có: IB < IC + BC
=> IB + IA < IC + BC + IA
=> IB + IA < AC + BC (2)
từ (1) và (2) => MA + MB < AC + BC (3)
tương tự ta cũng có: MA + MC < AB + BC (4)
MB + MC < AB + AC (5)
cộng theo vế (3) ; (4) ; (5) ta có:
MA + MB + MA + MC + MB + MC < AC + BC+ AB + BC + AB + AC
2( MA + MB + MC) < 2( AB + AC + BC)
MA + MB + MC < AB + AC + BC ( vì cùng chia 2 vế cho 2) (6)
áp dụng đ/lý bất đẳng thức tam giác ta có:
AB < MA + MB
AC < MA + MC
BC < MC + MB
cộng theo vế của các bất đẳng thức trên ta có:
AB + AC + BC < MA + MB + MA + MC + MC + MB
AB + AC + BC < 2( MA + MB + MC)
AB + AC + BC / 2 MA + MB + MC ( chia cả 2 vế cho 2) (7)
từ (6) và (7) => AB + AC + BC / 2< MA + MB + MC < AB + AC + BC
vậy MA + MA + MC lớn hơn nửa chu vi và nhỏ hơn chu vi tam giác ABC
(h.45) Xét \(\Delta ABM:\)MA+MB>AB (1)
Xét \(\Delta AMC:\) MA+MC>AC (2)
Xét \(\Delta BMC:\) MB+MC>BC (3)
Cộng từng vế (1), (2), (3):
2(MA+MB+MC)>\(\text{AB+AC+BC}\)
Suy ra :
MA+MB+MC>\(\dfrac{\text{AB+AC+BC}}{2}\)
Theo bất đẳng thức trong tam giác:
MA+MB>AB
MB+MC>AC
MA+MC>AC
\(\Rightarrow2MA+2MB+2MC>AB+BC+AC\)
\(\Rightarrow MA+MB+MC>\dfrac{AB+BC+AC}{2}\)
Trong ΔAMB, ta có:
MA + MB > AB (bất đẳng thức tam giác) (1)
Trong ΔAMC, ta có:
MA + MC > AC (bất đẳng thức tam giác) (2)
Trong ΔBMC, ta có:
MB + MC > BC (bất đẳng thức tam giác) (3)
Cộng từng vế (1), (2) và (3), ta có:
MA + MB + MA + MC + MB + MC > AB + AC + BC
⇔ 2(MA + MB + MC) > AB + AC + BC
Vậy MA + MB + MC > (AB + AC + BC) / 2