Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}=\dfrac{5a-3b-4c-5-9+20}{5\cdot2-3\cdot4-4\cdot6}=\dfrac{52}{-26}=-2\)
Do đó: a-1=-4; b+3=-8; c-5=-12
=>a=-3; b=-11; c=-7
Ta có:
\(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}\)
\(\Leftrightarrow\dfrac{5\left(a-1\right)}{10}=\dfrac{3\left(b+3\right)}{12}=\dfrac{4\left(c-5\right)}{6}\)
\(\Leftrightarrow\dfrac{5a-5}{10}=\dfrac{3b+9}{12}=\dfrac{4c-20}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{5a-5}{10}=\dfrac{3b+9}{12}=\dfrac{4c-20}{6}=\dfrac{5a-5-3b+9-4c+20}{10-12-6}\)
\(=\dfrac{46+6}{-26}=-2\)
\(\Rightarrow\dfrac{a-1}{2}=-2\Rightarrow a=-3\)
\(\Rightarrow\dfrac{b+3}{4}=-2\Rightarrow b=-11\)
\(\Rightarrow\dfrac{c-5}{6}=-2\Rightarrow c=-7\)
Vậy ...
Ta có: \(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}\)
\(\Leftrightarrow\dfrac{5a-5}{10}=\dfrac{3b+9}{12}=\dfrac{4c-20}{24}\) (Có sửa đề)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{5a-5}{10}=\dfrac{3b+9}{12}=\dfrac{4c-20}{24}=\dfrac{5a-5-3b-9-4c+20}{10-12-24}=-2\)
Vì \(\dfrac{5a-5}{10}=-2\Rightarrow a=-3\)
\(\dfrac{3b+9}{12}=-2\Rightarrow b=-11\)
\(\dfrac{4c-20}{24}=-2\Rightarrow c=-7\)
Vậy \(\left\{{}\begin{matrix}a=-3\\b=-11\\c=-7\end{matrix}\right..\)
bài 2 : a) \(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}\)
áp dụng dảy tỉ số bằng nhau
ta có : \(\dfrac{5\left(a-1\right)-3\left(b+3\right)-4\left(c-5\right)}{5.2-3.4-4.6}\)
\(=\dfrac{5a-5-3b-9-4c+20}{10-12-24}=\dfrac{\left(5a-3b-4c\right)-5-9+20}{-26}\)
\(=\dfrac{46+6}{-26}=\dfrac{52}{-26}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-1}{2}=-2\\\dfrac{b+3}{4}=-2\\\dfrac{c-5}{6}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-1=-4\\b+3=-8\\c-5=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-11\\c=-7\end{matrix}\right.\)
vậy \(a=-3;b=-11;c=-7\)
b) ta có : \(3a=2b\Leftrightarrow6a=4b=5c\Leftrightarrow\dfrac{6a}{2}=\dfrac{4b}{2}=\dfrac{5c}{2}\)
áp dụng dảy tỉ số bằng nhau
ta có \(\dfrac{-60a-60b+60c}{-10.2-15.2+12.2}=\dfrac{60\left(-a-b+c\right)}{-20-30+24}\)
\(=\dfrac{60\left(-52\right)}{-26}=\dfrac{-3120}{-26}=120\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{6a}{2}=120\\\dfrac{4b}{2}=120\\\dfrac{5c}{2}=120\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6a=240\\4b=240\\5c=240\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=40\\b=60\\c=48\end{matrix}\right.\)
vậy \(a=40;b=60;c=48\)
xem ở đây nè : http://olm.vn/hoi-dap/question/80837.html
nhớ đúng nhé
Đặt\(\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}=k\Leftrightarrow\hept{\begin{cases}a-1=2k\\b+3=4k\\c-5=6k\end{cases}\Leftrightarrow\hept{\begin{cases}a=2k+1\\b=4k-3\\c=6k+5\end{cases}}\left(1\right)}\)
Thay (1) vào biểu thức 5a-3b-4c=46. Ta được:
5(2k+1)-3(4k-3)-4(6k+5)=46 <=> 10k+5 -12k+9 -24k-20= 46 <=> -26k-6 = 46 <=> -26k=52 <=> k = -2
Thay k=-2 vào (1) ta được: a= 2.(-2) +1=-3, b=4.(-2) -3=-11, c= 6.(-2)+5=-7
Vậy a=-3, b=-11, c=-7
\(\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}=\frac{5a-5}{10}=\frac{3b+9}{12}=\frac{4c-20}{24}=.\)
\(=\frac{5a-5-3b-9-4c+20}{10-12-24}=\frac{5a-3b-4c+6}{-26}=\frac{46+6}{-26}=-2\)
\(\Rightarrow\frac{a-1}{2}=-2\Rightarrow a=-3\)
b; c tìm tương tự
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
\(1,\\ a,3^{2^3}=3^8>3^6=\left(3^2\right)^3\\ b,\left(-8\right)^9=\left(-2\right)^{27}< \left(-2\right)^{25}=\left(-32\right)^5\\ c,2^{21}=8^7< 9^7=3^{14}\\ 2,\)
\(a,\) Áp dụng tcdtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(b,\) Sửa: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow a=bk;c=dk\)
\(\Leftrightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2};\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\\ \LeftrightarrowĐpcm\)
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
Ta có : a - 1 / 2 = b + 3 / 4 = c - 5 / 6
<=> 5a - 5 / 10 = 3b + 9 / 12 = 4c - 20 / 24
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
5a - 5 / 10 = 3b + 9 / 12 = 4c - 20 / 24 = ( 5a - 3b - 4c ) - 5 - 9 + 20 / 10 - 12 - 24 = 52/-26 = -2
=> a - 1 / 2 = -2 <=> a = -3
=> b + 3 / 4 = -2 <=> b = -5
=> c - 5 / 6 = -2 <=> c = -7
Vậy a = -3 ; b = -5 ; c = -7
hình như bạn tính nhầm chỗ b + 3 / 4 = -2 <=> b phải = -11 ko phải = -5