Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-2,5):0,2+1=50\(\Rightarrow\)x=(50-1)x0,2+2,5=12,3
a)Số hạng thứ 50 của dãy số trên là 12,3
b)Tổng 1 cặp là: 12,3+2,5=14,8
Số cặp có là: 50:2=25 (cặp)
Tổng 50 số hạng đó là: 14,8x25=1195
Tổng của hai số là:
493,2 : 2 = 246,6
Ta có sơ đồ:
Theo sơ đồ ta có:
Số thứ nhất: 246,6 : ( 1 + 3) = 61,65
Só thứ hai: 246,6 - 61,65 = 184,95
Đáp số: a, 246,6
b, số thứ nhất 61,65
số thứ hai 184,95
a) Gọi số hạng thứ 51 là a
Ta có (a - 7) : 5 + 1 = 51
=> (a - 7) : 5 = 50
=> a - 7 = 250
=> a = 257
Vậy số hạng thứ 51 là 257
b) Tổng 50 số hạng đầu tiên là (257 + 7) x 51 : 2 = 6732
Đề bài là tìm số thứ 50 của tổng mà Nguyễn Lương Bảo Tiên cứ ghi là 51 là thế nào
Ta có :
7 = 7 + 0
8 = 7 + 0 + 1
10 = 7 + 0 + 2
13 = 7 + 0 + 1 + 2 + 3
17 = 7 + 0 + 1 + 2 + 3 + 4
........................................
=> số hạng thứ 50 là : 7 + 0 + 1 + 2 + 3 + .... + 49
= 7 + 49 x 50 : 2
= 7 + 122
Số hạng 1: 3=1x3
Số hạng 2:15=3x5
Số hạng 3: 35=5x7
Số hạng 4: 63=7x9
Số hạng 5: 99=9x11
.............................
Nhận xét: Mỗi số hạng là tích của 2 thừa số thừa số, hiệu giữa 2 thừa số là 2 trong đó thừa số thứ nhất của số hạng tiếp theo bằng thừa số thứ 2 của số hạng liền trước.
Như vậy các thừa số thứ nhất của các số hạng lập thành dãy số cách đều bắt đầu từ 1 có khoảng cách là 2
Xuất phát từ công thức tính số các số hạng của dãy số cách đều
\(n=\frac{a_n-a_1}{d}+1\Rightarrow100=\frac{a_n-1}{2}\Rightarrow a_n=201.\)
Như vậy thừa số thứ nhất của số hạng thứ 100 là 201 nên thừa số thứ 2 của số hạng thứ 100 là
201+2=203
Số hạng thứ 100 là
201x203=40803
Tổng của 100 số hạng đó là
A=1x3+3x5+5x7+7x9+9x11+...+201x203
6xA=1x3x6+3x5x6+5x7x6+7x9x6+9x11x6+...+201x203x6
6xA=1x3x(5+1)+3x5x(7-1)+5x7x(9-3)+7x9x(11-5)+9x11x(13-7)+...+201x203(205-199)
6xA=3+1x3x5-1x3x5+3x5x7-3x5x7+5x7x9-5x7x9+9x11x13-....-199x201x203+201x203x205=3+201x203x205=8364618
A=8364618:6=1394103
a. Số sau bằng số trước cộng với số thứ thự của nó.
b. Haizzz lười quá bạn tự tính nha. :X
a)Dãy số có khoảng cách tăng dần bắt đầu từ 2
b)Số hạng thứ 50 hơn số hạng thứ 49 số đơn vị là :
49+2=51
Số hạng thứ 50 hơn số hạng đầu tiên số đơn vị là :
(51+50+49+...+2)=[(51-2):1+1]x(51+2)=2650
Số hạng thứ 50 là :2010+2650=4660
Tổng của 2 số hạng là
3248 : 2 = 1624
Số hạng thứ nhất
1624 : 7 x 4 = 928
Số hạng thứ 2
1624 - 928 = 696
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.