K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBED và ΔBEC có 

BD=BC

\(\widehat{DBE}=\widehat{CBE}\)

BE chung

Do đó: ΔBED=ΔBEC

b: Ta có: ΔBED=ΔBEC

nên ED=EC

Xét ΔEDC có ED=EC

nên ΔEDC cân tại E

mà EK là đường trung tuyến

nên EK là đường cao

c: Ta có: ED=EC

nên E nằm trên đường trung trực của DC(1)

Ta có: KD=KC

nên K nằm trên đường trung trực của DC(2)

Ta có: BD=BC

nên B nằm trên đường trung trực của DC(3)

Từ (1), (2) và (3) suy ra B,K,E thẳng hàng

31 tháng 1 2022

a) Xét \(\Delta BED\) và \(\Delta BEC\) có:

\(BD=BC\) (giả thiết)

\(\widehat{DBE}=\widehat{CBE}\) (do \(BE\) là tia phân giác \(\widehat{B}\))

\(BE\) là cạnh chung

\(\Rightarrow\Delta BED=\Delta BEC\left(c.g.c\right)\)

b) Vì \(\Delta BED=\Delta BEC\left(cmt\right)\)

\(\Rightarrow ED=EC\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta EDC\) cân tại \(E\) 

Mà \(EK\) là đường trung tuyến \(\Delta EDC\)

\(\Rightarrow EK\) cũng là đường trung trực \(\Delta EDC\)

\(\Rightarrow EK\perp DC\)

c) Giả sử \(\Delta ABC\) vuông tại \(B\)

Ta có: \(\Delta DBC\) vuông cân tại \(B\)

\(\Rightarrow\widehat{ADC}=\widehat{BCD}=45^o\)

Xét \(\Delta ADH\left(\widehat{H}=90^o\right)\) có:

\(\widehat{ADH}+\widehat{DAH}=90^o\) (\(2\) góc phụ nhau)

\(\Rightarrow\widehat{DAH}=90^o-45^o=45^o\)

d) Ta có: \(BC=BD\) (giả thiết)

\(\Rightarrow\Delta BCD\)  cân tại \(B\)

Mà \(BE\) là đường phân giác \(\widehat{B}\) (giả thiết)

\(\Rightarrow BE\) cũng là đường cao \(\Delta BCD\)

\(\Rightarrow BE\perp DC\)

Lại có: \(EK\perp DC\left(cmt\right)\)

\(\Rightarrow B,K,E\) thẳng hàng

31 tháng 1 2022

Camon

15 tháng 12 2023

a: Xét ΔBDE và ΔBCE có

BD=BC

\(\widehat{DBE}=\widehat{CBE}\)

BE chung

Do đó: ΔBDE=ΔBCE

b: Ta có: ΔBDE=ΔBCE

=>ED=EC

=>E nằm trên đường trung trực của DC(1)

Ta có: BD=BC

=>B nằm trên đường trung trực của CD(2)

Ta có: KD=KC

=>K nằm trên đường trung trực của CD(3)

Từ (1),(2),(3) suy ra B,E,K thẳng hàng

=>B,E,K cùng nằm trên đường trung trực của DC

=>EK\(\perp\)DC

c: ΔAHD vuông tại H có \(\widehat{DAH}=45^0\)

nên ΔAHD vuông cân tại H

Xét ΔBDC có BD=BC

nên ΔBCD cân tại B

mà \(\widehat{BDC}=45^0\)

nên ΔBCD vuông cân tại B

=>\(\widehat{ABC}=90^0\)

 

30 tháng 3 2020

D K C B E 1 2

a)Xét tam giác BED và tam giác BEC có:

BD=BC(gt)

Góc B1= góc B(Vì BK là tia phân giác của góc B)

BE chung

=> Tam giác BED= tam giác BEC(c.g.c)

b) Xét tam giác BKS và tam giác BKC có:

BK chung 

Góc B1= góc B(Vì BK là tia phân giác của góc B)

DK=KC( vì K là trung điểm của DC)

=> Tam giác BKD= tam giác BKC(c.g.c)

=>BK vg góc với DC

hay EK vg góc với DC

c)VÌ EK vg góc với DC(cm b)

Mà BK vg góc với DC(cm b)

=> EK và BK cùng vg góc với DC

=> Ek trùng với BK

=>Ba điểm B,E,K thẳng hàng

                        

6 tháng 4 2020

Trần Phương Thảo

xem lại khúc chứng minh BKE THẲNG HÀNG

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

20 tháng 12 2023

loading...  loading...  loading...  

Bài 1: Cho tam giác ABC ( BC > AB). Tia phân giác của góc ABC cắt cạnh AC tại điểm E. Trên cạnh BC lấy điểm D sao cho BD = AB.a) Chứng minh: tam giác EAB = tam giác EDB.b) Kéo dài BA và DE cắt nhau ở K. Chứng minh: DK = AC.c) Kẻ CH vuông góc với BE kéo dài tại H. Chứng minh: CH // ADd) Chứng minh ba điểm C, H, K thẳng hàng.Bài 2: Cho tam giác ABC (BC > AB). Tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E sao...
Đọc tiếp

Bài 1: Cho tam giác ABC ( BC > AB). Tia phân giác của góc ABC cắt cạnh AC tại điểm E. Trên cạnh BC lấy điểm D sao cho BD = AB.

a) Chứng minh: tam giác EAB = tam giác EDB.

b) Kéo dài BA và DE cắt nhau ở K. Chứng minh: DK = AC.

c) Kẻ CH vuông góc với BE kéo dài tại H. Chứng minh: CH // AD

d) Chứng minh ba điểm C, H, K thẳng hàng.

Bài 2: Cho tam giác ABC (BC > AB). Tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E sao cho BE = AB.

a) Chứng minh: AD = DE.

b) BA và ED kéo dài cắt nhau ở I. Chứng minh: góc BID = góc BCD.

c) Chứng minh: BD là đường trung trực của đoạn thẳng IC.

d) Từ E kẻ đường thẳng song song với BD cắt AB kéo dài ở K. Chứng minh: tam giác AEK vuông. Tam giác ABC cần thêm điều kiện gì để AE = EK?

CÁC BẠN GIÚP MÌNH VỚI!!! KO CẦN VẼ HÌNH ĐÂU!!! MÌNH ĐANG CẦN GẤP LẮM!!! AI NHANH NHẤT MÌNH TICK CHO!!!

0
Bài 1: Cho DABC có AB = AC. Gọi D là trung điểm của BC. Chứng minh rằng:a)    DABD = DACD.       b) AD là tia phân giác của góc BAC.          c) AD ^ BC.Bài 2: Cho DABC vuông tại A, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.a)    So sánh độ dài DA và DE.         b) Tính góc BED.  c) CMR: BD ^ AE.Bài 3: Cho góc xOy có số đo khác 1800. Lấy điểm A, B thuộc tia Ox sao cho OA < OB, lấy điểm C, D thuộc tia Oy sao cho OC...
Đọc tiếp

Bài 1: Cho DABC có AB = AC. Gọi D là trung điểm của BC. Chứng minh rằng:

a)    DABD = DACD.       b) AD là tia phân giác của góc BAC.          c) AD ^ BC.

Bài 2: Cho DABC vuông tại A, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.

a)    So sánh độ dài DA và DE.         b) Tính góc BED.  c) CMR: BD ^ AE.

Bài 3: Cho góc xOy có số đo khác 1800. Lấy điểm A, B thuộc tia Ox sao cho OA < OB, lấy điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:

a)    AD = BC;    b) DEAB = DECD;           c) Tia OE là tia phân giác của góc xOy

Bài 4: Cho tam giác ABC (AB<AC) vuông tại A, Gọi M là trung điểm của BC, trên tia AM lấy điểm N sao cho MN = MA.

a)    Chứng minh AMB = NMC.

b)    Chứng minh ACCN.

c)     Chứng minh AM=

Bài 5: Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của AB và CD.

a)    CMR: DAOC = DBOD; AC // BD.

b)    Gọi M, N lần lượt là trung điểm của AC và BD. CMR: O là trung điểm của MN.

Bài 6: Cho , O là trung điểm của BC. Lấy điểm D thuộc tia đối của tia OA sao cho OD = OA.

    a) Chứng minh rằng: .

    b) Chứng minh AC = BD và AC // BD.

c) Trên đoạn thẳng AO lấy điểm I, trên đoạn thẳng OD lấy điểm H sao cho CI // BH.      Chứng minh rằng: và AI = HD.

    d) Kẻ . Chứng minh 3 điểm  E, O, F thẳng hàng.

Bài 7: Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại E, trên cạnh BC lấy điểm D sao cho BA = BD.

a) Chứng minh:

b) Chứng minh: ED  BC.

c) Trên tia đối của tia AB lấy điểm F sao cho BF = BC. Chứng minh EF = EC.

d) Chứng minh ba điểm D, E, F thẳng hàng.

GIÚP MÌNH VỚI

1
20 tháng 12 2021

Câu 1: 

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn