K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho DABC có AB = AC. Gọi D là trung điểm của BC. Chứng minh rằng:

a)    DABD = DACD.       b) AD là tia phân giác của góc BAC.          c) AD ^ BC.

Bài 2: Cho DABC vuông tại A, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.

a)    So sánh độ dài DA và DE.         b) Tính góc BED.  c) CMR: BD ^ AE.

Bài 3: Cho góc xOy có số đo khác 1800. Lấy điểm A, B thuộc tia Ox sao cho OA < OB, lấy điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:

a)    AD = BC;    b) DEAB = DECD;           c) Tia OE là tia phân giác của góc xOy

Bài 4: Cho tam giác ABC (AB<AC) vuông tại A, Gọi M là trung điểm của BC, trên tia AM lấy điểm N sao cho MN = MA.

a)    Chứng minh AMB = NMC.

b)    Chứng minh ACCN.

c)     Chứng minh AM=

Bài 5: Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của AB và CD.

a)    CMR: DAOC = DBOD; AC // BD.

b)    Gọi M, N lần lượt là trung điểm của AC và BD. CMR: O là trung điểm của MN.

Bài 6: Cho , O là trung điểm của BC. Lấy điểm D thuộc tia đối của tia OA sao cho OD = OA.

    a) Chứng minh rằng: .

    b) Chứng minh AC = BD và AC // BD.

c) Trên đoạn thẳng AO lấy điểm I, trên đoạn thẳng OD lấy điểm H sao cho CI // BH.      Chứng minh rằng: và AI = HD.

    d) Kẻ . Chứng minh 3 điểm  E, O, F thẳng hàng.

Bài 7: Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại E, trên cạnh BC lấy điểm D sao cho BA = BD.

a) Chứng minh:

b) Chứng minh: ED  BC.

c) Trên tia đối của tia AB lấy điểm F sao cho BF = BC. Chứng minh EF = EC.

d) Chứng minh ba điểm D, E, F thẳng hàng.

GIÚP MÌNH VỚI

1
20 tháng 12 2021

Câu 1: 

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD