Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biết đa thức f(x)=ax3+bx2+cx+d(với a khác 0) có 2 nghiệm 1 và-1. Tìm nghiệm thứ ba của đa thức f(x)?
Theo đề:
f(1)=a+b+c+d=0
f(-1)=-a+b-c+d=0
=>f(1)+f(-1)=2(b+d)=0 => b+d = 0 => b=-d (1)
f(1)-f(-1)=2(a+c)=0 => a+c=0 => a=-c(2)
Thay (1),(2) vào pt:
f(x)= -cx^3-dx^2+cx+d = cx(1 - x^2) + d(1 - x^2) = (cx + d)(1 - x)(1 + x) =0
=> x=1,x=-1, x= -d/c
Vậy nghiệm thứ 3 của f(x) là x= -d/c
tích của 2 số chẵn (hay một số chẵn) là một số chẵn ta có : (8.a)là một số chẵn =>8a-9b là một số chẵn=> A là một số chẵn (2a) là một số chẵn => 3c-2a là một số chẵn =.>B là một số chẵn =>A x B có tích là một số chẵn (1) lại có : A x B x C=(A xB) x C nên từ (1) =>A x B x C là một số chẵn (đpcm)
Mk giúp pn bài 1 thui nha...
a) A=3+32+33+...+3100
<=>A=(3+32) +(33+34) +...+(399+3100)
<=>A=12+32.(3+32)+...+398.(3+32)
<=>A=12+32.12+...+398.12
<=>A=12.(32+33+...+398)
Ta có 12 chia hết cho 4 => 12.(32+33+...+398) chia hết cho 4 => A chia hết cho 4
Vậy A chia hết cho 4
b) A=3+32+33+...+3100
<=> 3A=32+33+...+3101
<=>3A-A=32+33+...+3101-3-32-33-...-3100
<=>2A=3101-3
<=>A=(3101-3)/2
Thay A=(3101-3)/2 vào 2A+3=3x-1 ta có:
2.[(3101-3)/2]+3=3x-1
<=>3101-3+3=3x-1
<=>3101=3x-1
<=>x-1=101
<=>x=102
vậy x=102
Ai thấy đúng tích nha , mấy pn kb +theo dõi mk vs ạ....
Ta có: a/(a+b) > a/(a+b+c)
b/(b+c) > b/(b+c+a)
c/(c+a) > c/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > [a/(a+b+c)] + [b/(a+b+c)] + [c/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > 1
Lại có: a/(a+b) < (a+b)/(a+b+c)
b/(b+c) < (b+c)/(b+c+a)
c/(c+a) < (c+a)/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [(a+b)/(a+b+c)] + [(b+c)/(a+b+c)] + [(c+a)/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [2.(a+b+c)]/(a+b+c)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < 2
Vậy .....
Ta có: 2a+c=0
Q(x)=ax2+bx+c
⇒Q(1)=a+b+c ⇔ Q(1) x 2 =2a+2b+2c
Q(-2)=4a-2b+c
⇒Q(-2) + 2Q(1)=4a-2b+c+2a+2b+2c=6a+3c=3(2a+c)=0
⇒Q(-2) và 2Q(1) trái dấu
⇒Q(-2).2.Q(1)≤0 ⇔Q(-2).Q(1)≤0 (ĐPCM)