K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2022

1) Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)

⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)

2) Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0

nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)

Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0

nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)

Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.

\(a,f\left(5\right)\Rightarrow x=3\\ 3f\left(5\right)=0f\left(3\right)\Rightarrow f\left(5\right)=0\\ b,x=0\Rightarrow0f\left(2\right)=-9f\left(0\right)\Rightarrow f\left(0\right)=0\) 

=> x = 0 là nghiệm

\(x=-3\Rightarrow-3f\left(-1\right)=\left(9-9\right)f\left(-3\right)=0f\left(-3\right)\\ \Rightarrow f\left(-1\right)=0\) 

=> x = -1 là nghiệm

Theo ý a) ta có \(x=5\) 

\(\Rightarrow f\left(x\right)\) có 3 nghiệm \(=\left\{0;-1;5\right\}\)

13 tháng 8 2015

a)x.f(x + 1) - ( x + 2). f( x) = 0 (1) 
*Với x=0 thì (1) 0.f(1) – 2.f(0) =0 f(0)=0. Vậy f(x) có một nghiệm là 0. 
*Với x=-2 thì (1) -2.f(-1) – 0.f(0) =0 f(-1)=0. Vậy f(x) có một nghiệm là -1. 
KL: Vậy f(x) có ít nhất hai nghiệm là 0 và -1(ĐPCM).

13 tháng 8 2015

Cách khác:

a)Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0. 
Nếu f(a) = 0 => a là nghiệm của f(x). 
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x. 
+ Thay x = 0 vào (1) ta được 
0.f(0 + 1) = (0 + 2).f(0) 
=> 0 = 2.f(0) 
=> f(0) = 0 
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2) 

+ Thay x = -2 vào (1) ta được: 
(-2).f(-2 + 1) = (-2 + 2).f(-2) 
=> (-2).f(-1) = 0.f(-2) 
=> (-2).f(-1) = 0 
=> f(-1) = 0 
=> x = -1 là 1 nghiệm của đa thức trên (3) 
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2