Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ko dám chắc về cách làm nữa:
f(x)+x.f(-x)=x+1
Nếu x=0:
f(x)+0.f(-x)=x+1
f(x)=0+1=1
Nếu x=-1:
f(-1)+(-1).f(--1)=-1+1
f(-1)-f(1)=0
Nếu x=1:
f(1)+1.f(-1)=1+1
f(1)+f(-1)=2
f(1)+1.f(-1)=1+1
f(1)+f(-1)=2
=> f(1)+f(-1)-[f(-1)-f(1)]=f(1)+f(-1)+[f(-1)-f(1)]=2
f(1)+f(-1)-f(-1)+f(1)=f(1)+f(-1)+f(-1)-f(1)=2
f(1).2=2.f(-1)=2
f(1)=f(-1)=1
Vậy với mọi x thì f(x)=1
1) Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)
⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)
2) Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0
nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)
Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0
nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)
Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.