Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x đầu ở đa thức A là x^3 chăng?
a/ \(A=x^3-5x^2+8x-4\)
\(=\left(x^3-x^2\right)+\left(-4x^2+4\right)+\left(8x-8\right)\)
\(=x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)+8\)
\(=\left(x-1\right)\left(x^2-4x-4\right)=\left(x-1\right)\left(x-2\right)^2\)
b/ \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
\(=\dfrac{x^5}{30}-\dfrac{5x^3}{30}+\dfrac{4x}{30}\)
\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\dfrac{x\left(x^4-x^2-4x^2+4\right)}{30}\)
\(=\dfrac{x\left(x+2\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)}{30}\)
a)B = \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)
= \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)
= \(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)
= \(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)
b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)
Thay x = -4 vào B, ta có:
B = \(\dfrac{-4.3}{-4+3}=12\)
c) Để B = \(\dfrac{-3}{5}\)
<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)
<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)
d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên
<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)
x+3 | -9 | -3 | -1 | 1 | 3 | 9 |
x | -12(C) | -6(C) | -4(C) | -2(C) | 0(C) | 6(C) |
a, \(\dfrac{6}{2x+1}\Rightarrow2x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
2x + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2x | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
x | 0 | -1 | 1/2 ( loại ) | -3/2 ( loại ) | 1 | -2 | 5/2 ( loại ) | -7/2 ( loại ) |
c, \(\dfrac{x-3}{x-1}=\dfrac{x-1-2}{x-1}=1-\dfrac{2}{x-1}\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x - 1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
tương tự ....
+ Thông thường biểu thức A sẽ có dạng trong đó f(x) và g(x) là các đa thức và g(x) ≠ 0
+ Cách làm:
- Bước 1: Tách về dạng trong đó m(x) là một biểu thức nguyên khi x nguyên và k có giá trị là số nguyên
- Bước 2: Để A nhận giá trị nguyên thì nguyên hay nghĩa là g(x) thuộc tập ước của k
- Bước 3: Lập bảng để tính các giá trị của x
- Bước 4: Kết hợp với điều kiện đề bài, loại bỏ những giá trị không phù hợp, sau đó kết luận bài toán
2. Dạng 2: Tìm giá trị của x để biểu thức A nhận giá trị nguyên+ Đây là một dạng nâng cao hơn của dạng bài tập tìm gá trị nguyên của x để biểu thức A nhận giá trị nguyên bởi ta chưa xác định giá trị của biến x có nguyên hay không để biến đổi biểu thức A về dạng . Bởi vậy, để làm được dạng bài tập này, chúng ta sẽ thực hiện các bước sau:
\(Q=\dfrac{x+3-x+7}{2x+1}=\dfrac{10}{2x+1}\in Z\\ \Leftrightarrow2x+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\\ \Leftrightarrow x\in\left\{-3;-1;0;2\right\}\left(x\in Z\right)\)
a: \(A=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
Đặt \(A=\dfrac{x^2+x+1}{-2x^2+2x-2}\)
\(x^2+x+1=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)
\(-2x^2+2x-2\)
\(=-2\left(x^2-x+1\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}< 0\forall x\)
Do đó: \(A=\dfrac{x^2+x+1}{-2x^2+2x-2}< 0\forall x\)
\(\dfrac{x^2+x+1}{-2x^2+2x-2}=\dfrac{x^2+x+1}{-2\left(x^2-x+1\right)}\)
Ta thấy:
\(x^2+x+1\\=x^2+2\cdot x\cdot\dfrac12+\left(\dfrac12\right)^2-\left(\dfrac12\right)^2+1\\=\left(x+\dfrac12\right)^2+\dfrac34\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
hay \(x^2+x+1>0\forall x\) (1)
Lại có:
\(x^2-x+1\\=x^2-2\cdot x\cdot\dfrac12+\left(\dfrac12\right)^2-\left(\dfrac12\right)^2+1\\=\left(x-\dfrac12\right)^2+\dfrac34\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
hay \(x^2-x+1>0\forall x\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x^2+x+1}{x^2-x+1}>0\forall x\)
\(\Rightarrow\dfrac{x^2+x+1}{-2\left(x^2-x+1\right)}< 0\forall x\)
hay đa thức \(\dfrac{x^2+x+1}{-2x^2+2x-2}< 0\forall x\)
\(\text{#}Toru\)
\(B=\dfrac{x^5-5x^3+4x}{30}=\dfrac{x\left(x^4-5x^2+4\right)}{30}=\dfrac{x\left(x^2-1\right)\left(x^2-4\right)}{30}=\dfrac{x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{30}=\dfrac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\).
Xét x nguyên. Trong 5 số x - 2, x - 1, x, x + 1, x + 2 tồn tại 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 5.
Do đó (x - 2)(x - 1)x(x + 1)(x + 2) luôn nguyên với mọi x nguyên.
Mặt khác tồn tại 2 số trong 5 số x - 2, x - 1, x, x + 1, x + 2 chia hết cho 2 mà 30 chia hết cho 2 nhưng không chia hết cho 4 nên B chia hết cho 2.
Vậy B khác 17 với mọi x nguyên.