Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}$
$\Rightarrow (a^{101}+b^{101})^2=(a^{100}+b^{100})(a^{102}+b^{102})$
$\Rightarrow a^{202}+b^{202}+2a^{101}.b^{101}=a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}$
$\Rightarrow 2a^{101}b^{101}=a^{100}b^{102}+a^{102}b^{100}$
$\Rightarrow a^{100}b^{100}(a^2+b^2-2ab)=0$
$\Rightarrow a^{100}b^{100}(a-b)^2=0$
$\Rightarrow a=0$ hoặc $b=0$ hoặc $a=b$
Nếu $a=0$ thì:
$b^{100}=b^{101}=b^{102}$
$\Rightarrow b^{100}(b-1)=0$
$\Rightarrow b=0$ hoặc b=1$ (đều tm)
$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$
Nếu $b=0$ thì tương tự, $a=0$ hoặc $a=1$
$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$
Nếu $a=b$ thì thay $a=b$ vào điều kiện đề thì:
$2b^{100}=2b^{101}=2b^{102}$
$\Rightarrow b^{100}=b^{101}=b^{102}$
$\Rightarrow b^{100}(b-1)=0$
$\Rightarrow b=0$ hoặc $b=1$ (đều tm)
Nếu $a=b=0\Rightarrow a^{2022}+b^{2023}=0$
Nếu $a=b=1\Rightarrow a^{2022}+b^{2023}=2$
Vậy $a^{2022}+b^{2023}$ có thể nhận giá trị $0,1,2$
\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow\left(a^{100}+b^{100}\right)\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)
\(\Rightarrow a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}=a^{202}+b^{202}+2a^{101}b^{101}\)
\(\Rightarrow a^{100}b^{100}\left(a^2+b^2\right)=a^{100}b^{100}\left(2ab\right)\)
\(\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a=b\)
Thế vào \(a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Rightarrow a^{100}+a^{100}=a^{101}+a^{101}\)
\(\Rightarrow2a^{100}\left(a-1\right)=0\)
\(\Rightarrow a=1\Rightarrow b=1\)
\(\Rightarrow...\)
Gọi biểu thức\(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)là P.
Có hai trường hợp sau đây:
- \(a+b+c\ne0\):
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\Rightarrow a+b=2c\\b+c-a=a\Rightarrow b+c=2a\\a+c-b=b\Rightarrow a+c=2b\end{cases}}\)
\(\Rightarrow P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
- \(a+b+c=0\)
\(\Rightarrow a=-\left(b+c\right);b=-\left(a+c\right);c=-\left(a+b\right)\)
\(\Rightarrow P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=\left(\frac{a+b}{-\left(b+c\right)}\right)\left(\frac{a+c}{-\left(a+b\right)}\right)\left(\frac{b+c}{-\left(a+c\right)}\right)=\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{-\left(a+b\right)\left(b+c\right)\left(a+c\right)}=-1\)
Vậy \(P\in\left\{8;-1\right\}\)
bạn cộng tất cả phân số ban đầu vs 2
sẽ đc là:a+b+c/c=a+b+c/a=a+b+c/b
rồi xét 2 trường hợp: a+b+ckhác 0 thì a=b=c nên a+b/a=2,a+c/c=2,c+b/c=2 hay 1+b/a=2,1+a/c=2,1+c/b=2
TH2:a+b+c=0 nên a+b=-c,a+c=-b,b+c=-a nên giá trị biểu thức phải tìm là -1(ở đây bạn phân tích biểu thức phải tìm ra rồi nhân các tử và mẫu vs nhau rồi rút gọn đi ra -1)
Đặt a/b=b/c=c/a=k
=>a=bk; b=ck; c=ak
=>a=bk; b=ak*k=ak^2; c=ak
=>a=ak^3; b=ak^2; c=ak
=>k=1
=>a=b=c
\(B=\dfrac{a^{2022}\cdot a^{2023}}{a^{4045}}=1\)
Thay 105 = abc
\(M=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}.\)a không thể = 0 vì tích abc = 105
\(M=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{b+1+bc}=\frac{bc+b+1}{bc+b+1}=1.\)vì bc+b+1 khác 0.
Nếu bạn thử thế số vào luôn thì sẽ dể làm hơn đó
vì ta có a.b.c= 105 nên a,b,c khác 0
ta có a.b.c=3.5.7=105
=> ta có a=3, b=5, c=7. Sau đó bạn thế số vào nhé
toán lp 8 mà đem ch hs lp 7 lm
Câu hỏi của I have a crazy idea - Toán lớp 6 - Học toán với OnlineMath
Đã là bồi dưỡng HSG thì em phải chấp nhận làm các bài khó. Cố lên! Em có thể tham khảo thêm :)))