Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}$
$\Rightarrow (a^{101}+b^{101})^2=(a^{100}+b^{100})(a^{102}+b^{102})$
$\Rightarrow a^{202}+b^{202}+2a^{101}.b^{101}=a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}$
$\Rightarrow 2a^{101}b^{101}=a^{100}b^{102}+a^{102}b^{100}$
$\Rightarrow a^{100}b^{100}(a^2+b^2-2ab)=0$
$\Rightarrow a^{100}b^{100}(a-b)^2=0$
$\Rightarrow a=0$ hoặc $b=0$ hoặc $a=b$
Nếu $a=0$ thì:
$b^{100}=b^{101}=b^{102}$
$\Rightarrow b^{100}(b-1)=0$
$\Rightarrow b=0$ hoặc b=1$ (đều tm)
$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$
Nếu $b=0$ thì tương tự, $a=0$ hoặc $a=1$
$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$
Nếu $a=b$ thì thay $a=b$ vào điều kiện đề thì:
$2b^{100}=2b^{101}=2b^{102}$
$\Rightarrow b^{100}=b^{101}=b^{102}$
$\Rightarrow b^{100}(b-1)=0$
$\Rightarrow b=0$ hoặc $b=1$ (đều tm)
Nếu $a=b=0\Rightarrow a^{2022}+b^{2023}=0$
Nếu $a=b=1\Rightarrow a^{2022}+b^{2023}=2$
Vậy $a^{2022}+b^{2023}$ có thể nhận giá trị $0,1,2$
\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow\left(a^{100}+b^{100}\right)\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)
\(\Rightarrow a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}=a^{202}+b^{202}+2a^{101}b^{101}\)
\(\Rightarrow a^{100}b^{100}\left(a^2+b^2\right)=a^{100}b^{100}\left(2ab\right)\)
\(\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a=b\)
Thế vào \(a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Rightarrow a^{100}+a^{100}=a^{101}+a^{101}\)
\(\Rightarrow2a^{100}\left(a-1\right)=0\)
\(\Rightarrow a=1\Rightarrow b=1\)
\(\Rightarrow...\)
Đặt a/b=b/c=c/a=k
=>a=bk; b=ck; c=ak
=>a=bk; b=ak*k=ak^2; c=ak
=>a=ak^3; b=ak^2; c=ak
=>k=1
=>a=b=c
\(B=\dfrac{a^{2022}\cdot a^{2023}}{a^{4045}}=1\)
Câu hỏi của I have a crazy idea - Toán lớp 6 - Học toán với OnlineMath
Đã là bồi dưỡng HSG thì em phải chấp nhận làm các bài khó. Cố lên! Em có thể tham khảo thêm :)))
Ta có:
a2017 + b2017 = a2017 + ab2016 + a2016b + b2017 - a2016b - ab2016
= a.(a2016 + b2016) + b.(b2016 + a2016) - ab.(a2015 - b2015)
= (a2016 + b2016).(a + b) - ab.(a2015 + b2015)
Chia cả 2 vế cho a2017 + b2017 = a2016 + b2016 = a2015 + b2015
=> a + b - ab = 1
=> a.(1 - b) - 1 + b = 0
=> a.(1 - b) - (1 - b) = 0
=> (1 - b).(a - 1) = 0
=> a = b = 1
Ta có: P = 20.a + 11.b + 2017
P = 20.1 + 11.b + 2017
P = 20 + 11 + 2017
P = 2048
bài 2 bn nên cộng 3 cái lại
mà năm nay bn lên đại học r đúng k ???