K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để d1//d2 thì \(\left\{{}\begin{matrix}3m^2+1-4m=0\\-m-5< >m^2-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(m-1\right)=0\\m^2-9+m+5< >0\end{matrix}\right.\)

=>m=1/3 hoặc m=1

b: Để hai đường cắt nhau thì (3m-1)(m-1)<>0

hay \(m\notin\left\{\dfrac{1}{3};1\right\}\)

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3m^2+1=4m\\m^2-9< >-m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3m^2-4m+1=0\\m^2+m-4< >0\end{matrix}\right.\)

=>m=1/3 hoặc m=1

b: Để hai đường cắt nhau thì 3m^2+1<>4m

=>m<>1/3 và m<>1

Khi m=2 thì (d1): \(y=8x-7\) và (d2): \(y=13x-5\)

Tọa độ giao là:

13x-5=8x-7 và y=8x-7

=>5x=-2 và y=8x-7

=>x=-2/5 và y=8x-7

=>x=-2/5 và y=-16/5-7=-51/5

24 tháng 10 2023

a/

\(\Rightarrow3=4m.2-m-5\Leftrightarrow m=\dfrac{8}{5}\)

b/

Tọa độ A là \(A\left(x_0;y_0\right)\)

\(\Rightarrow y_0=4mx_0-m-5\forall m\)

\(\Leftrightarrow\left(4x_0-1\right)m-\left(y_0+5\right)=0\forall m\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_0-1=0\\y_0+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{4}\\y_0=-5\end{matrix}\right.\)

=> d1 luân đi qua điểm A cố định \(A\left(\dfrac{1}{4};-5\right)\forall m\)

Tọa độ B là \(B\left(x_1;y_1\right)\)

\(\Rightarrow y_1=\left(3m^2+1\right)x_1+m^2-4\forall m\)

\(\Leftrightarrow3m^2x_1+x_1+m^2-4-y_1=0\forall m\)

\(\Leftrightarrow\left(3x_1+1\right)m^2+x_1-y_1-4=0\forall m\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1+1=0\\x_1-y_1-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{3}\\y_1=-\dfrac{13}{3}\end{matrix}\right.\)

=> d2 luân đi qua điểm B cố định \(B\left(-\dfrac{1}{3};-\dfrac{13}{3}\right)\)

d/ d1//d2 khi

\(\left\{{}\begin{matrix}4m=3m^2+1\\-m-5\ne m^2-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\\m^2+m+1\ne0\end{matrix}\right.\)

Ta có \(m^2+m+1>0\forall m\)

\(\Rightarrow\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\)

e/

\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) tìm m để phương trình có nghiệm

Tìm giao

\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) khi m=2

Thay m=2 tìm x rồi thay vào d1 hoặc d2 để tìm y

 

 

 

 

14 tháng 12 2022

sos

 

14 tháng 12 2022

cứu với mn