Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2a+5d}{3c-4d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}-\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4d}{3c-4d}\left(=\frac{a}{c}\right)\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=v\)
\(\Rightarrow\hept{\begin{cases}a=vb\\c=vd\end{cases}}\)( 1 )
Thay (1) vào vế trái , ta có :
\(VT=\frac{2vb+5b}{3vb-4b}=\frac{b\left(2v+5\right)}{b\left(3v-4\right)}=\frac{2v+5}{3v-4}\)( *)
Thay (1) vào vế phải ta có :
\(VP=\frac{2vd+5d}{3vd-4d}=\frac{2v+5}{3v-4}\)(**)
Từ ( * ) và (** )
=> ĐPCM
Đặt\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Khi đó: \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(=\frac{2k+5}{3k-4}\right)\)
Từ\(\frac{a}{b}\)=\(\frac{c}{d}\)suy ra \(\frac{a}{c}\)=\(\frac{b}{d}\)( t/c TLT)
Áp dụng tính chất của dãy TSBN ta có:\(\frac{a}{c}\)=\(\frac{b}{d}\)=\(\frac{2a+5b}{2c+5d}\)=\(\frac{3a-4b}{3c-4d}\)
Từ \(\frac{2a+5b}{2c+5d}\)=\(\frac{3a-4b}{3c-4d}\) suy ra\(\frac{2a+5b}{3a-4b}\)=\(\frac{2c+5d}{3c-4d}\)(t/c TLT)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{2bk+5b}{3bk-4b}=\frac{2dk+5d}{3dk-4d}\)
Xét VT \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\left(1\right)\)
Xét VP \(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\left(2\right)\)
Từ (1) và (2) ta có Đpcm
Giải:
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\left(=\frac{a}{c}\right)\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)
Vậy...
Gọi a/b=c/d=k nên a=bk;c=dk
=>2a+5b/3a-4b=2bk+5b/3bk-4b=b(2k+5)/b(3k-4)=2k+5/3k-4(1)
=>2c+5d/3c-4d=2dk+5d/3dk-4d=d(2k+5)/d(3k-4)=2k+5/3k-4(2)
Từ (1);(2) =>2a+5b/3a-4b=2c+5d/3c-4d
Ta đặt:\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Khi đó: \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(=\frac{2k+5}{3k-4}\right)\)
Xem ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
ở lớp 7 hình như đang học cm tam giác đồng dạng,nên áp dụng cái này(nếu bạn chưa học thì có thể hỏi cô):
\(\frac{a}{b}=\frac{x}{y}=>\frac{a}{a+-b}=\frac{x}{x+-y}\)
\(\frac{a}{b}=\frac{c}{d}=>\frac{3a}{4b}=\frac{3c}{4d}=>\frac{3a}{3a-4b}=\frac{3c}{3c-4d}\)\(=>\frac{2a}{3a-4b}=\frac{2c}{3c-4d}\)(1)
Làm tương tự ;\(\frac{5b}{3a-4b}=\frac{5d}{3c-4d}\)(2) Cộng(1)(2) thì được