Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a/a+b+c>a/a+b+c+d
b/a+b+d>b/a+b+c+d
c/b+c+d>c/a+b+c+d
d/a+c+d>d/a+b+c+d
Suy ra: (a/a+b+c)+(b/a+b+d)+(c/b+c+d)+(d/a+c+d)>(a/a+b+c+d)+(b/a+b+c+d)+(c/a+b+c+d)+(d/a+b+c+d)
Vậy M>1 (1)
Lại có: a/a+b+c<a+d/a+b+c+d
b/a+b+d<b+c/a+b+c+d
c/b+c+d<a+c/a+b+c+d
d/a+c+d<b+d/a+b+c+d
Suy ra: (a/a+b+c)+(b/a+b+d)+(c/b+c+d)+(d/a+c+d)<(a+d/a+b+c+d)+(b+c/a+b+c+d)+(a+c/a+b+c+d)+(b+d/a+b+c+d)
Vậy: M<2 (2) (cậu tự tính vế sau nhé!)
Từ (1) và (2), suy ra: 1<M<2
Vậy M ko phải là STN
Giải
Ta có : a + b = c + d suy ra a = c + d - b
Thay a = c + d - b vào đẳng thức ab + 1 = cd , ta được :
\(b\left(c+d-b\right)+1=cd\)
\(\Leftrightarrow cb+bd-b^2-cd=-1\)
\(\Leftrightarrow\left(cb-b^2\right)+\left(bd-cd\right)=-1\)
\(\Leftrightarrow b\left(c-b\right)+d\left(c-b\right)=-1\)
\(\Leftrightarrow\left(b+d\right)\left(c-b\right)=-1\)
\(\Rightarrow b+d=-\left(c-b\right)\)
\(\Rightarrow b+d=-c+b\)
\(\Rightarrow c=d\left(đpcm\right)\)
\(a-\left(b+c\right)=d\)
\(\Rightarrow a-b-c=d\)
\(\Rightarrow a-c=d+b\)
\(a-\left(-b+d\right)=c\)
\(\Leftrightarrow a+b-d=c\)
\(\Leftrightarrow a+b=c+d\left(đpcm\right)\)
hok tốt!!
có a - (-b + c) = d
a + b - c = d
a + b - c - b = d - b
a - c = -b + d (đpcm)