Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c=\frac{bd}{b-d}\Rightarrow bc-cd=bd\Leftrightarrow bc=d\left(b+c\right)\Rightarrow bc=da\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Vì a=b+c nên ad=(b+c)d= bd +cd (1)
Vì c= bd/b-d nên bd=c(b-d)=bc-cd hay bc=bd+cd (2)
Từ (1) và (2) suy ra:
ad=bc =>a/b=c/d
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) (1)
Ta lại có : \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
Từ (1) ; (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (ĐPCM)
\(a+c=2b\) (*)
\(2bd=c\left(b+d\right)\)(**)
Thế (*) vào (**)
\(\left(a+c\right)d=c\left(b+d\right)\)
Theo tính chất phân phối ta có:
\(ad+cd=cb+cd\)
\(\Leftrightarrow ad=cb\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)