Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(b^3+c^3\right)\left(1+1\right)\left(1+1\right)\ge\left(b+c\right)^3\)
\(\Rightarrow b^3+c^3\ge\dfrac{\left(b+c\right)^3}{4}\Rightarrow\dfrac{a}{\sqrt[3]{b^3+c^3}}\le\dfrac{a\sqrt[3]{4}}{b+c}\)
Tương tự và cộng lại:
\(VT\le\sqrt[3]{4}\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)< \sqrt[3]{4}\left(\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\right)=2\sqrt[3]{4}\)
Ta có: \(abc=b+2c\)
\(\Rightarrow a=\dfrac{b+2c}{bc}\)\(\Rightarrow a=\dfrac{1}{c}+\dfrac{2}{b}\)
Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Ta có: \(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\)
\(=\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{4}{b+c-a+c+a-b}+2.\dfrac{4}{b+c-a+a+b-c}+3.\dfrac{4}{c+a-b+a+b-c}=\dfrac{4}{2c}+2.\dfrac{4}{2b}+3.\dfrac{4}{2a}=\dfrac{2}{c}+\dfrac{4}{b}+\dfrac{6}{a}=2\left(\dfrac{1}{c}+\dfrac{2}{b}+\dfrac{3}{a}\right)=2\left(a+\dfrac{3}{a}\right)\ge2.2\sqrt{\dfrac{a.3}{a}}=4\sqrt{3}\)
(bất đẳng thức Cauchy cho 2 số dương)
\(ĐTXR\Leftrightarrow a=b=c=\sqrt{3}\)
1. Đặt $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=T$
$\frac{a}{b+c}> \frac{a}{a+b+c}$
$\frac{b}{c+a}> \frac{b}{c+a+b}$
$\frac{c}{a+b}> \frac{c}{a+b+c}$
$\Rightarrow T> \frac{a+b+c}{a+b+c}=1$ (đpcm)
----
Xét hiệu:
$\frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{-a(b+c-a)}{(b+c)(a+b+c)}<0$ theo BĐT tam giác
$\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}$
Tương tư: $\frac{b}{c+a}< \frac{2b}{c+a+b}$
$\frac{c}{a+b}< \frac{2c}{a+b+c}$
Cộng theo vế:
$T< \frac{2(a+b+c)}{a+b+c}=2$
$\frac{b}{a+c}
2.
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}.1\leq \frac{1}{4}(\frac{b+c}{a}+1)^2=\frac{(b+c+a)^2}{4a^2}\)
\(\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Tương tự với các phân thức còn lại và cộng theo vế:
$\Rightarrow T\geq \frac{2(a+b+c)}{a+b+c}=2$
Dấu "=" xảy ra khi $b+c=a; c+a=b; a+b=c\Rightarrow a=b=c=0$ (vô lý)
Vậy dấu "=" không xảy ra, tức là $T>2>1$ (đpcm)
a.
Áp dụng hệ thức lượt trong tam giác vuông ta có:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$
$\Leftrightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{3a^2}$
$\Rightarrow AC=\sqrt{3}a$
$BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+3a^2}=2a$
b.
$HB=\frac{BC}{4}$ thì $HC=\frac{3}{4}BC$
$\Rightarrow \frac{HB}{HC}=\frac{1}{3}$
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC; AC^2=CH.BC$
$\Rightarrow \frac{AB}{AC}=\sqrt{\frac{BH}{CH}}=\frac{\sqrt{3}}{3}$
Áp dụng định lý Pitago:
$4a^2=BC^2=AB^2+AC^2=(\frac{\sqrt{3}}{3}.AC)^2+AC^2$
$\Rightarrow AC=\sqrt{3}a$
$\Rightarrow AB=a$
c.
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC$
$\Leftrightarrow AB^2=BH(BH+CH)$
$\Leftrightarrow a^2=BH(BH+\frac{3}{2}a)$
$\Leftrightarrow BH^2+\frac{3}{2}aBH-a^2=0$
$\Leftrightarrow (BH-\frac{a}{2})(BH+2a)=0$
$\Rightarrow BH=\frac{a}{2}$
$BC=BH+CH=2a$
$AC=\sqrt{BC^2-AB^2}=\sqrt{3}a$
d. Tương tự phần a.
Ta có:
\(\left(2a^2-b^2-c^2\right)^2\ge0\)
\(\Leftrightarrow4a^4+b^4+c^4-4a^2b^2-4a^2c^2+2b^2c^2\ge0\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge6a^2b^2+6a^2c^2-3a^4\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3a^2\left(2b^2+2c^2-a^2\right)\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2b^2+2c^2-a^2}}\ge\dfrac{\sqrt{3}a}{a^2+b^2+c^2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}\ge\sqrt{3}\dfrac{a^2}{a^2+b^2+c^2}\)
Tương tự: \(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\sqrt{3}.\dfrac{b^2}{a^2+b^2+c^2}\) ; \(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}.\dfrac{c^2}{a^2+b^2+c^2}\)
Cộng vế: \(P\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c\)