K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

Giả sử a < b < c thì a \(\ge\)2 ; b \(\ge\)3 ; c \(\ge\)5.

Ta có :

\(\frac{1}{\left[a,b\right]}=\frac{1}{ab}\le\frac{1}{6},\frac{1}{\left[b,c\right]}=\frac{1}{bc}\le\frac{1}{15},\frac{1}{\left[c,a\right]}=\frac{1}{ca}\le\frac{1}{10}\)

suy ra vế trái nhỏ hơn hoặc bằng :

\(\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\text{ ( đpcm )}\)

24 tháng 3 2016

giả sử a<b<c thì a> hoặc bằng 2 , b> hoặc bằng 3 , c> hoặc bằng 5 ta có:

1/[a,b]=1/ab<hoặc=1/6 , 1/[b,c] = 1/bc < hoặc = 1/15 , 1/[c,a]=1/ca < hoặc =1/10

suy ra vế trái nhỏ hơn hoặc bằng :

                 1/6+1/15+1/10=1/3

6 tháng 2 2016

[a;b]=ab

[b;c]=bc

[c;a]=ca

\(\Rightarrow\frac{1}{\left[a;b\right]}+\frac{1}{\left[b;c\right]}+\frac{1}{\left[c;a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)

=>đpcm

6 tháng 2 2016

[a;b] là BCNN hay là phần nguyên?
 

9 tháng 5 2016

Có :

[a,b]=a.b

[b,c]=b.c

[a,c]=c.a

Không mất tính tổng quát, ta giả sử a<b<c

\(\Rightarrow a\ge2;b\ge3;c\ge5\)

\(\Rightarrow\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{2.5}=\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)

(dpcm)

14 tháng 8 2015

Vì abc = 1 và a, b, c >0 nên tồn tại x, y, z > 0 sao cho a = x/y , b = y/z , c = z/x 
Thay vào BĐT cần chứng minh ta được 
1/(ab + a + 2) + 1/(bc + b + 2) + 1/(ca + c + 2) 
= yz/(xy + xz + 2yz) + xz/(yz + xy + 2xz) + xy/(xz + yz + 2xy) 
= yz/[(xy + yz) + (xz + yz)] + xz/[(yz + xz) + (xy + xz)] + xy/[(xz + xy) + (yz + xy)] 
Mặt khác, theo Cauchy thì: 
a + b ≥ 2√(ab) 
1/a + 1/b ≥ 2√(1/ab) 
Từ đó: (a + b)(1/a + 1/b) ≥ 4.√(ab/ab) = 4 
<=> 4/(a + b) ≤ 1/a + 1/b 
hay 1/(a + b) ≤ (1/4).(1/a + 1/b) 
Sử dụng BĐT trên thì ta có: 
1/[(xy + yz) + (xz + yz)] ≤ (1/4).[1/(xy + yz) + 1/(xz + yz)] 
Hay 
yz/[(xy + yz) + (xz + yz)] ≤ (1/4).[yz/(xy + yz) + yz/(xz + yz)] ---- (1) 
Tương tự với 2 bộ còn lại 
xz/[(yz + xz) + (xy + xz)] ≤ (1/4).[xz/(yz + xz) + xz/(xy + xz)] ---- (2) 
và 
xy/[(xz + xy) + (yz + xy)] ≤ (1/4).[xy/(xz + xy) + xy/(yz + xy)] ---- (3) 
Cộng Vế (1), (2), (3) và nhóm những đa thức có mẫu chung ta được 
Vế trái ≤ (1/4).[ (xy + yz)/(xy + yz) + (yz + xz)/(zy + xz) + (xz + xy)/(xz + xy)] = 3/4 
Như vậy bài toán đã được chứng minh

16 tháng 3 2019

\(\text{Vì }\left[a,b\right],\left[b,c\right],\left[c,a\right]\text{ là BCNN}\)

\(\Rightarrow\left[a,b\right]=a.b;\left[b,c\right]=b.c;\left[c,a\right]=c.a\)

\(\Rightarrow\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{\left[c+a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\text{Giả sử }a< b< c\)

\(\Rightarrow a\le2;b\le3;c\le5\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)

\(\text{hay }\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{c+a}\le\frac{1}{3}\left(đpcm\right)\)

17 tháng 3 2019

ể ==

\(2< 3\Rightarrow\frac{1}{2}>\frac{1}{3}\)

Cậu Bé Tiến Pro: e đổi dấu đi :))