K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2019

Đây là bất đẳng thức Bunhia Cốpxki bạn, lên mạng tra cách giải là đc!

23 tháng 3 2019

Sai đề rồi bn

24 tháng 9 2019

Bình phương ba vế suy ra \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Sau đó chứng minh tương tự bunhiacopxki

6 tháng 1 2022

Nếu cái j?

 

6 tháng 1 2022

nếu = nhau

 

1 tháng 8 2019

\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)

\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)

\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)

\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)

\(+c^2y^2=0\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

15 tháng 5 2021

đặt x/a=y/b=z/c=k

=>x=a.k,

y=b.k

z=c.k

=>(a^2k^2+b^2k^2+c^2k^2)(a^2+b^2+c^2)=k^2.(a^2+b^2+c^2)^2(1)

(ax+by+cz)^2=(a.a.k+b.b.k+c.c.k)^2=(a^2.k+b^2.k+c^2.k)^2

=k^2(a^2+b^2+c^2)(2)

từ (1)(2)=> nếu x/a=y/b=z/c thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2

 

=>

 

 

 

26 tháng 5 2017

Học hành thế này! Tớ mách cô Hiền nhé!

28 tháng 6 2021

\(1.\)

Theo đề ra, ta có:

\(ax+by=c\)

\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)

\(cx+by=b\)

\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)

\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)

Khi đó ta có:

\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)

26 tháng 10 2017

Bài 8:

Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.

Tìm GTNN của F=a2+b2+x2+y2+bx+ayF=a2+b2+x2+y2+bx+ay

Lời giải:

Sử dụng giả thiết ax−by=√3ax−by=3 ta có:

(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3

Áp dụng bất đẳng thức CauchyCauchy , suy ra:

a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3

Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by

Ta có:

(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9

⇒2√x2+3+x≥3⇒2x2+3+x≥3

Vậy MinT=3MinT=3

Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;

∑2a2−bcb2−bc+c2≥3∑2a2−bcb2−bc+c2≥3

Không mất tính tổng quát, ta có thể giả sử bb là số nằm giữa aa và cc

BĐT đã cho tương đương với

∑2a2+(b−c)2b2−bc+c2≥6∑2a2+(b−c)2b2−bc+c2≥6

Áp dụng BĐT Cauchy-Schwarz, ta có

∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a

∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a

Do đó ta chỉ cần chứng minh

(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)

Ta có 

b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)

≥a2(b−c)2+c2(a−b)2≥a2(b−c)2+c2(a−b)2

Suy ra 

2b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)22b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)2

⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a

Do đó ta chỉ còn phải chứng minh 

(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a

⇔∑a4+abc∑a≥2∑a2b2⇔∑a4+abc∑a≥2∑a2b2

BĐT này hiển nhiên đúng theo BĐT Schur

∑a4+abc∑a≥∑ab(a2+b2)∑a4+abc∑a≥∑ab(a2+b2)

Và BĐT AM-GM

∑ab(a2+b2)≥2∑a2b2∑ab(a2+b2)≥2∑a2b2

Kết thúc chứng minh 

Đẳng thức xảy ra khi a=b=ca=b=c hoặc a=ba=b, c=0c=0 và các hoán vị.

26 tháng 10 2017

Bạn leminhduc tự hỏi tự trả lời à

5 tháng 4 2017

Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)

5 tháng 4 2017

1) Đặt n+1 = k^2

2n + 1 = m^2

Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ 

Đặt m = 2t+1

=> 2n+1 = m^2 = (2t+1)^2

=> 2n+1 = 41^2 + 4t + 1

=> n = 2t(t+1)

=> n là số chẵn

=> n+1 là số lẻ

=> k lẻ 

+) Vì k^2 = n+1

=> n = (k-1)(k+1)

Vì k -1 và k+1 là 2 số chẵn liên tiếp

=> (k+1)(k-1) chia hết cho * 

=> n chia hết cho 8

+) k^2 + m^2 = 3a + 2

=> k^2 và m^2 chia 3 dư 1

=> m^2 - k^2 chia hết cho 3

m^2 - k^2 = a

=> a chia hết cho 3

Mà 3 và 8 là 2 số nguyên tố cùng nhau

=> a chia hết cho 24

18 tháng 8 2017

1) pp: biến đổi tương đương

ta có: VT= \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+x^2\right).\)

        = \(\left(ax\right)^2+\left(ay\right)^2+\left(az\right)^2+\left(bx\right)^2+\left(by\right)^2+\left(bz\right)^2+\left(cx\right)^2+\left(cy\right)^2+\left(cz\right)^2\)     (*)

VP=\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)+\left(bz-cy\right)^2+\left(cx-az\right)^2+\left(ay-bx\right)^2\)

=\(\: \left(ax\right)^2+\left(by\right)^2+\left(cz\right)^2+2\left(axby+bycz+czax\right)+\left(bz\right)^2+\left(cy\right)^2+\left(cx\right)^2+\left(az\right)^2\)

\(+\left(ay\right)^2+\left(bx\right)^2-2\left(bzcy+cxaz+aybx\right)\)   (**)

Từ (*),(**)=> VT-VP=0=> VT=VP=> \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+x^2\right).\)=\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)+\left(bz-cy\right)^2+\left(cx-az\right)^2+\left(ay-bx\right)^2\)   (đpcm)

18 tháng 8 2017

2) áp dụng BĐT Schwartz ta có: 

\(\left(a+b+c\right)^2\le\left(1+1+1\right)\left(a^2+b^2+c^2\right)\)

=>\(2010^2\le3\left(a^2+b^2+c^2\right)\)  (vì a+b+c=2010)

=>\(a^2+b^2+c^2\ge\frac{2010^2}{3}=1346700\)

Dấu '=' xảy ra khi: a=b=c

Vậy GTNN của a^2 +b^2 +c^2 là 1346700 khi a=b=c