K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+a^3b^2+a^2b^3+b^5-\left(a+b\right)\)

                                                                =  \(a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)

                                                                =\(a^5+b^5+\left(a+b\right)-\left(a+b\right)\)

                                                               =\(a^5+b^5\left(dpcm\right)\)

24 tháng 9 2017

Biến đổi VP ta có :

\(VP=\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)

\(=a^5+a^3b^2+a^2b^3+b^5-\left(a+b\right)\)

\(=a^5+a.\left(ab\right)^2+b.\left(ab\right)^2+b^5-\left(a+b\right)\)

\(=a^5+a+b+b^5-\left(a+b\right)\) (vì \(ab=1\))

\(=a^5+b^5=VT\)(đpcm)

24 tháng 9 2017

Biến đổi vế phải :
\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5+a^3b^2+a^2b^3-\left(a+b\right) \)

\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)

\(=a^5+b^5+\left(a+b\right)-\left(a+b\right)\)(vì ab=1)

\(=a^5+b^5\)

18 tháng 8 2019

By Cauchy-Schwarz, we have:

\(VT\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)+a^2b+b^2c+c^2a}\)

We will prove: \(a^2b+b^2c+c^2a\le a^3+b^3+c^3\)

\(\Leftrightarrow a^2b+b^2c+c^2a+3abc\le a^3+b^3+c^3+3abc\)

By Schur, we have: \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a\right)\)

So we're only need to prove: \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a+3abc\)

\(\Leftrightarrow ab^2+bc^2+ca^2\ge3abc\)

It is true by AM-GM ineq', so we have Q.E.D.

P/s: Em thử giải bài này bằng tiếng Anh (để tự luyện kĩ năng tiếng anh, tí em giải lại theo tiếng việt)

18 tháng 8 2019

Ấy nhầm:V

By Schur, we have \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

So we're only need to prove \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a\)

Còn lại y chang:v

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

7 tháng 4 2020

cho a b c 0 và a+b+c=3 CMR a/1+b^2 +b/1+c^2 +c/1+a^2 >=3/2

giúp minh với!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

16 tháng 9 2017

\(https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7\)https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7
Ấn vào linh đấy ế

21 tháng 9 2015

Vì    \(ab=1\to\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5+a^3b^2+a^2b^3-\left(a+b\right)\)

\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)=a^5+b^5+\left(a+b\right)-\left(a+b\right)=a^5+b^5.\)

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]