Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi VP ta có :
\(VP=\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)
\(=a^5+a^3b^2+a^2b^3+b^5-\left(a+b\right)\)
\(=a^5+a.\left(ab\right)^2+b.\left(ab\right)^2+b^5-\left(a+b\right)\)
\(=a^5+a+b+b^5-\left(a+b\right)\) (vì \(ab=1\))
\(=a^5+b^5=VT\)(đpcm)
Biến đổi vế phải :
\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5+a^3b^2+a^2b^3-\left(a+b\right)
\)
\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)
\(=a^5+b^5+\left(a+b\right)-\left(a+b\right)\)(vì ab=1)
\(=a^5+b^5\)
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
Lời giải:
Đầu tiên ta sẽ chứng minh $(a^3+b^3)(a^5+b^5)\leq 2(a^8+b^8)(*)$
Thật vậy, $(*)\Leftrightarrow a^3b^5+a^5b^3\leq a^8+b^8$
$\Leftrightarrow a^5(a^3-b^3)-b^5(a^3-b^3)\geq 0$
$\Leftrightarrow (a^5-b^5)(a^3-b^3)\geq 0$
$\Leftrightarrow (a-b)^2(a^4+...+b^4)(a^2+ab+b^2)\geq 0$ (luôn đúng với mọi $a,b$
Do đó $(*)$ đúng
Nhân cả 2 vế của $(*)$ với $a+b\geq 0$ suy ra:
$(a+b)(a^3+b^3)(a^5+b^5)\leq 2(a+b)(a^8+b^8)$
Ta cần chứng minh $2(a+b)(a^8+b^8)\leq 4(a^9+b^9)$
$\Leftrightarrow (a+b)(a^8+b^8)\leq 2(a^9+b^9)$
$\Leftrightarrow a^9+b^9-a^8b-ab^8\geq 0$
$\Leftrightarrow a^8(a-b)-b^8(a-b)\geq 0$
$\Leftrightarrow (a^8-b^8)(a-b)\geq 0$
$\Leftrightarrow (a^4-b^4)(a^4+b^4)(a-b)\geq 0$
$\Leftrightarrow (a^4+b^4)(a-b)^2(a+b)(a^2+b^2)\geq 0$ (luôn đúng với mọi $a+b\geq 0$
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a+b=0$ hoặc $a=b$
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Bài 1:Với \(ab=1;a+b\ne0\) ta có:
\(P=\frac{a^3+b^3}{\left(a+b\right)^3\left(ab\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4\left(ab\right)^2}+\frac{6\left(a+b\right)}{\left(a+b\right)^5\left(ab\right)}\)
\(=\frac{a^3+b^3}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)
\(=\frac{a^2+b^2-1}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2-1\right)\left(a+b\right)^2+3\left(a^2+b^2\right)+6}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2-1\right)\left(a^2+b^2+2\right)+3\left(a^2+b^2\right)+6}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2\right)^2+4\left(a^2+b^2\right)+4}{\left(a+b\right)^4}=\frac{\left(a^2+b^2+2\right)^2}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2+2ab\right)^2}{\left(a+b\right)^4}=\frac{\left[\left(a+b\right)^2\right]^2}{\left(a+b\right)^4}=1\)
Bài 2: \(2x^2+x+3=3x\sqrt{x+3}\)
Đk:\(x\ge-3\)
\(pt\Leftrightarrow2x^2-3x\sqrt{x+3}+\sqrt{\left(x+3\right)^2}=0\)
\(\Leftrightarrow2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\sqrt{\left(x+3\right)^2}=0\)
\(\Leftrightarrow2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=x\\\sqrt{x+3}=2x\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\ge0\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x-3=0\left(x\ge0\right)\\4x^2-x-3=0\left(x\ge0\right)\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{13}}{2}\\x=1\end{cases}\left(x\ge0\right)}\)
Bài 4:
Áp dụng BĐT AM-GM ta có:
\(2\sqrt{ab}\le a+b\le1\Rightarrow b\le\frac{1}{4a}\)
Ta có: \(a^2-\frac{3}{4a}-\frac{a}{b}\le a^2-\frac{3}{4a}-4a^2=-\left(3a^2+\frac{3}{4a}\right)\)
\(=-\left(3a^2+\frac{3}{8a}+\frac{3}{8a}\right)\le-3\sqrt[3]{3a^2\cdot\frac{3}{8a}\cdot\frac{3}{8a}}=-\frac{9}{4}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)
Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)
\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)
Cộng vế:
\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)
Vì \(ab=1\to\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5+a^3b^2+a^2b^3-\left(a+b\right)\)
\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)=a^5+b^5+\left(a+b\right)-\left(a+b\right)=a^5+b^5.\)