K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2021

Dấu BĐT bị ngược, sửa đề: \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

Đặt \(b^2=x\left(x>0\right)\Rightarrow a+x=2ax\).

Khi đó ta cần chứng minh:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Áp dụng BĐT AM-GM:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\)

\(\le\dfrac{1}{2a^2x+2ax^2}+\dfrac{1}{2ax^2+2a^2x}\)

\(=\dfrac{2}{2ax\left(a+x\right)}\)

\(=\dfrac{1}{ax\left(a+x\right)}\)

\(=\dfrac{1}{2a^2x^2}\)

Ta thấy: \(a+x\ge2\sqrt{ax}\)

\(\Leftrightarrow2ax\ge2\sqrt{ax}\)

\(\Leftrightarrow ax-\sqrt{ax}\ge0\)

\(\Leftrightarrow\sqrt{ax}\left(\sqrt{ax}-1\right)\ge0\)

\(\Leftrightarrow\sqrt{ax}\ge1\)

\(\Rightarrow ax\ge1\)

Khi đó: \(\dfrac{1}{2a^2x^2}\le\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Hay \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:

\(a^4+b^2\geq 2\sqrt{a^4b^2}=2a^2b\)

\(\Rightarrow a^4+b^2+2ab^2\geq 2a^2b+2ab^2=2ab(a+b)\)

\(\Rightarrow \frac{1}{a^4+b^2+2ab^2}\leq \frac{1}{2ab(a+b)}\)

Tương tự: \(\frac{1}{b^4+a^2+2a^2b}\leq \frac{1}{2ab(a+b)}\)

Do đó: \(Q\leq \frac{1}{2ab(a+b)}+\frac{1}{2ab(a+b)}=\frac{1}{ab(a+b)}\)

Từ đk đầu tiên \(\frac{1}{a}+\frac{1}{b}=2\Leftrightarrow \frac{a+b}{ab}=2\Rightarrow a+b=2ab\)

\(\Rightarrow Q\leq \frac{1}{2a^2b^2}\)

Theo BĐT Cô-si: \(2=\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}\Rightarrow ab\geq 1\)

\(\Rightarrow Q\leq \frac{1}{2(ab)^2}\leq \frac{1}{2.1^2}=\frac{1}{2}\)

Vậy \(Q_{\max}=\frac{1}{2}\Leftrightarrow a=b=1\)

24 tháng 12 2021

Khúc đầu là: \(\dfrac{1}{a^4+b^2+2b^2}\) hay \(\dfrac{1}{a^4+b^2+2ab^2}\) ??

24 tháng 12 2021

\(2a^2b\) không phải \(2ab^2\)

24 tháng 11 2021

\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)

24 tháng 11 2021

\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

a: \(A=\dfrac{1}{2a-1}\cdot\sqrt{5a^2}\cdot\left|2a-1\right|\)

\(=\dfrac{2a-1}{2a-1}\cdot a\sqrt{5}=a\sqrt{5}\)(do a>1/2)

b: \(A=\dfrac{\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x-1}+1}\)

\(=\dfrac{\left|\sqrt{x-1}-1\right|}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1}+1}{\sqrt{x-1}+1}\)

\(=\dfrac{\sqrt{x-1}-1}{\sqrt{x-1}-1}+1=1+1=2\)

c:

\(=\dfrac{a+b}{b^2}\cdot\dfrac{ab^2}{a+b}=a\)

d: Sửa đề: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)

e:

\(A=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{x-1}\)

f:

\(A=\sqrt{\dfrac{m}{\left(1-x\right)^2}\cdot\dfrac{4m\left(1-2x+x^2\right)}{81}}\)

\(=\sqrt{\dfrac{m}{\left(x-1\right)^2}\cdot\dfrac{4m\left(x-1\right)^2}{81}}\)

\(=\sqrt{\dfrac{4m^2}{81}}=\dfrac{2m}{9}\)

 

NV
9 tháng 4 2022

Đặt \(\left\{{}\begin{matrix}a-2=x\ge0\\b=y\ge0\end{matrix}\right.\) \(\Rightarrow2y+4=\left(x+2\right)y\Rightarrow xy=4\)

\(P=\dfrac{\sqrt{x^2+2x}}{x+1}+\dfrac{\sqrt{y^2+2y}}{y+1}+\dfrac{1}{x+y+2}\)

\(P=\dfrac{\sqrt{2x\left(x+2\right)}}{\sqrt{2}\left(x+1\right)}+\dfrac{\sqrt{2y\left(y+2\right)}}{\sqrt{2}\left(y+1\right)}+\dfrac{1}{x+1+y+1}\)

\(P\le\dfrac{1}{2\sqrt{2}}\left(\dfrac{3x+2}{x+1}+\dfrac{3y+2}{y+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)

\(P\le\dfrac{1}{2\sqrt{2}}\left(3-\dfrac{1}{x+1}+3-\dfrac{1}{y+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)

\(P\le\dfrac{3\sqrt{2}}{2}-\dfrac{\sqrt{2}-1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)

Ta có:

\(\dfrac{1}{x+1}+\dfrac{1}{y+1}=\dfrac{x+y+2}{xy+x+y+1}=\dfrac{x+y+2}{x+y+5}=1-\dfrac{3}{x+y+5}\ge1-\dfrac{3}{2\sqrt{xy}+5}=\dfrac{2}{3}\)

\(\Rightarrow P\le\dfrac{3\sqrt{3}}{2}-\dfrac{\sqrt{2}-1}{4}.\dfrac{2}{3}=...\)

Dấu "=" xảy ra khi \(x=y=2\) hay \(\left(a;b\right)=\left(4;2\right)\)

NV
14 tháng 3 2022

\(2a^2+5b^2+2ab=1\Leftrightarrow\left(a-b\right)^2+\left(a+2b\right)^2=1\)

Đặt \(P=\dfrac{a-b}{a+2b+2}\Rightarrow P\left(a+2b\right)+2P=a-b\)

\(\Rightarrow2P=\left(a-b\right)-P\left(a+2b\right)\)

\(\Rightarrow4P^2=\left[\left(a-b\right)-P\left(a+2b\right)\right]^2\le\left(P^2+1\right)\left[\left(a-b\right)^2+\left(a+2b\right)^2\right]=P^2+1\)

\(\Rightarrow3P^2\le1\Rightarrow-\dfrac{1}{\sqrt{3}}\le P\le\dfrac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

Lời giải:

Áp dụng BĐT AM-GM:
\(A=\sum \frac{2a}{b^2+2}=\sum (a-\frac{ab^2}{b^2+2})=\sum a-\sum \frac{ab^2}{b^2+2}\)

\(=6-\sum \frac{ab^2}{b^2+2}=6-\sum \frac{ab^2}{\frac{b^2}{2}+\frac{b^2}{2}+2}\)

\(\geq 6-\sum \frac{ab^2}{3\sqrt[3]{\frac{b^4}{2}}}=6-\frac{1}{3}\sum \sqrt[3]{2a^3b^2}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sum \sqrt[3]{2a^3b^2}\leq \sum \frac{2a+ab+ab}{3}=\frac{12+2(ab+bc+ac)}{3}=4+\frac{2}{3}(ab+bc+ac)\)

\(\leq 4+\frac{2}{3}.\frac{(a+b+c)^2}{3}=12\)

Do đó: $A\geq 6-\frac{1}{3}.12=2$

Vậy $A_{\min}=2$ khi $a=b=c=2$