Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}\frac{1}{x+3y-1}=X\\\frac{1}{2x-y+3}=Y\end{matrix}\right.\)
Hệ phương trình trở thành:
\(\left\{{}\begin{matrix}2X-Y=5\\X+2Y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4X-2Y=10\\X+2Y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5X=15\\X+2Y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}X=3\\Y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x+3y-1}=3\\\frac{1}{2x-y+3}=1\end{matrix}\right.\) (nhân chéo) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=\frac{1}{3}\\2x-y+3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\2x-y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\6x-3y=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\7x=-\frac{14}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{2}{3}\\y=\frac{2}{3}\end{matrix}\right.\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(-\frac{2}{3};\frac{2}{3}\right)\)
a: vecto AB=(2;2)=(1;1)
=>VTPT là (-1;1)
Phương trình tham số AB là: \(\left\{{}\begin{matrix}x=-1+t\\y=0+t=t\end{matrix}\right.\)
Phương trình tổng quát của AB là:
-1(x+1)+1(y-0)=0
=>-x-1+y=0
=>x-y+1=0
b: vecto BC=(2;0)
Vì AH vuông góc BC
nên AH nhận vecto BC làm vtpt và đi qua A
=>AH: 2(x+1)+0(y-0)=0
=>2x+2=0
=>x=-1
c: Tọa độ M la:
x=(-1+3)/2=2/2=1 và y=(0+2)/2=1
B(1;2); M(1;1)
vecto BM=(0;-1)
=>VTPT là (1;0)
Phương trình BM là:
1(x-1)+0(y-2)=0
=>x-1=0
=>x=1
a) Phương trình đường thẳng AB đi qua 2 điểm A và B là: \(\frac{{x - 1}}{{ - 1 - 1}} = \frac{{y - 3}}{{ - 1 - 3}} \Leftrightarrow \frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 4}} \Leftrightarrow 2x - y + 1 = 0\)
Phương trình đường thẳng AC đi qua 2 điểm A và C là: \(\frac{{x - 1}}{{5 - 1}} = \frac{{y - 3}}{{ - 3 - 3}} \Leftrightarrow \frac{{x - 1}}{4} = \frac{{y - 3}}{{ - 6}} \Leftrightarrow 3x + 2y - 9 = 0\)
Phương trình đường thẳng BC đi qua 2 điểm B và C là:
\(\frac{{x + 1}}{{5 + 1}} = \frac{{y + 1}}{{ - 3 + 1}} \Leftrightarrow \frac{{x + 1}}{6} = \frac{{y + 1}}{{ - 2}} \Leftrightarrow x + 3y + 4 = 0\)
b) Gọi d là đường trung trực của cạnh AB.
Lấy N là trung điểm của AB, suy ra \(N\left( {0;1} \right)\).
Do \(d \bot AB\) nên ta có vecto pháp tuyến của d là: \(\overrightarrow {{n_d}} = \left( {1;2} \right)\)
Vậy phương trình đường thẳng d đi qua N có vecto pháp tuyến \(\overrightarrow {{n_d}} = \left( {1;2} \right)\) là:
\(1\left( {x - 0} \right) + 2\left( {y - 1} \right) = 0 \Leftrightarrow x + 2y - 2 = 0\)
c) Do AH vuông góc với BC nên vecto pháp tuyến của AH là \(\overrightarrow {{n_{AH}}} = \left( {3; - 1} \right)\)
Vậy phương trình đường cao AH đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AH}}} = \left( {3; - 1} \right)\)là: \(3\left( {x - 1} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow 3x - y = 0\)
Do M là trung điểm BC nên \(M\left( {2; - 2} \right)\). Vậy ta có: \(\overrightarrow {AM} = \left( {1; - 5} \right) \Rightarrow \overrightarrow {{n_{AM}}} = \left( {5;1} \right)\)
Phương trình đường trung tuyến AM đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AM}}} = \left( {5;1} \right)\) là:
\(5\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 5x + y - 8 = 0\)
a: BC: x+y+4=0
=>AH: -x+y+c=0
Thay x=-1 và y=-2 vào AH, ta được:
c+1-2=0
=>c=1
=>-x+y+1=0
=>x-y-1=0
b: BC: x+y+4=0
=>B(x;-x-4)
Tọa độ M là:
xM=(x-1)/2 và yM=(-x-4-2)/2=(-x-6)/2
BC: x+y+4=0
=>MN: x+y+c=0
Thay xM=(x-1)/2 và yM=(-x-6)/2 vào MN, ta được:
\(\dfrac{x-1}{2}+\dfrac{-x-6}{2}+c=0\)
=>c+(1/2x-1/2-1/2x-3)=0
=>c=7/2
=>x+y+7/2=0
a. \(\overrightarrow{BC}=\left(3;-3\right)=3\left(1;-1\right)\)
Phương trình AH đi qua A và vuông góc BC nên nhận \(\left(1;-1\right)\) là vtpt có dạng:
\(1\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow x-y+1=0\)
b. Gọi M là trung điểm BC \(\Rightarrow M\left(-\dfrac{3}{2};\dfrac{7}{2}\right)\Rightarrow\overrightarrow{AM}=\left(-\dfrac{7}{2};\dfrac{1}{2}\right)=-\dfrac{1}{2}\left(7;-1\right)\)
Phương trình AM qua A và nhận \(\left(7;-1\right)\) là vtcp có dạng: \(\left\{{}\begin{matrix}x=2+7t\\y=3-t\end{matrix}\right.\)
c. Đường trung bình song song BC đi qua M và nhận (1;-1) là 1 vtcp có dạng:
\(\left\{{}\begin{matrix}x=-\dfrac{3}{2}+t\\y=\dfrac{7}{2}-t\end{matrix}\right.\)
a, Tam giác ABC có trọng tâm \(G=\left(3;\dfrac{1}{3}\right)\)
Phương trình trung tuyến AM:
\(\dfrac{x-5}{3-5}=\dfrac{y+1}{\dfrac{1}{3}+1}\Leftrightarrow2x+3y-7=0\)
b, Phương trình đường thẳng BC là: \(x-2y=0\)
Phương trình đường cao AH vuông góc với BC nên có phương trình: \(2x+y+m=0\left(m\in R\right)\)
Mà \(A=\left(5;-1\right)\in AH\Rightarrow2.5-1+m=0\Leftrightarrow m=-9\)
\(\Rightarrow AH:2x+y-9=0\)
em ko biết