Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT quen thuộc
\(a^2+b^2+c^2\ge ab+bc+ca\Rightarrow ab+bc+ca\le7\left(1\right)\)
Áp dụng BĐT Cauchy-Schwarz ta lại có:
\(\left(a+b+c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\left(a+b+c\right)^2\le21\Rightarrow a+b+c\le\sqrt{21}\left(2\right)\)
Cộng theo vế 2 BĐT \(\left(1\right);\left(2\right)\) ta có:
\(ab+bc+ca+a+b+c\le7+\sqrt{21}< 7+\sqrt{25}=12\) (ĐPCM)
Từ \(\left(a+b+c\right)^2+12=4\left(a+b+c\right)+2\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac+12-4a-4b-4c-2ab-2bc-2ac=0\)
\(\Leftrightarrow a^2+b^2+c^2-4a-4b-4c+12=0\)
\(\Leftrightarrow\left(a^2-4a+4\right)+\left(b^2-4b+4\right)+\left(c^2-4c+4\right)=0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}a-2=0\\b-2=0\\c-2=0\end{cases}\Leftrightarrow a=b=c=2}\)
Vậy ta có điều phải chứng minh
Từ ( a + b + c )2 + 12 = 4 ( a + b + c ) + 2 ( ab + bc + ac )
<=> a2 + b2 + c2 + 2ab + 2bc + 2ac + 12 - 4a - 4b - 4c - 2ab - 2bc - 2ac = 0
<=> a2 + b2 + c2 - 4a - 4b - 4c + 12 = 0
<=> ( a2 - 4a + 4 ) + ( b2 - 4b + 4 ) + ( c2 - 4c + 4 ) = 0
<=> ( a - 2 )2 + ( b - 2 )2 + ( c - 2 )2 = 0
<=> \(\hept{\begin{cases}a-2=0\\b-2=0\\c-2=0\end{cases}}\)<=> a = b = c = 2
Vậy ta có điều phải chứng minh
Bổ dung thêm \(ab^2+bc^2+ca^2=3\)
Áp dụng BĐT Cauchy ba số:
\(\left(a+7\right)+8+8\ge3\sqrt[3]{\left(a+7\right)8\cdot8}=12\sqrt[3]{a+7}\)
\(\Rightarrow\sqrt[3]{a+7}\le\frac{a+23}{12}\)
Tương tự ta có: \(\hept{\begin{cases}\sqrt[3]{b+7}\le\frac{b+23}{12}\\\sqrt[3]{c+7}\le\frac{c+23}{12}\end{cases}}\)
Cộng các BĐT trên ta nhận được:
\(\sqrt[3]{a+7}+\sqrt[3]{b+7}+\sqrt[3]{c+7}\le\frac{a+b+c+69}{12}\)
Áp dụng BĐT Cauchy 4 số:
\(a\le\frac{a^4+1+1+1}{4}=\frac{a^4+3}{4};b\le\frac{b^4+3}{4};c\le\frac{c^4+3}{4}\)
\(\Rightarrow\frac{a+b+c+69}{12}\le\frac{\frac{a^4+3}{4}+\frac{b^4+3}{4}+\frac{c^4+3}{4}+69}{12}=\frac{a^4+b^4+c^4+285}{48}\)
Ta chứng minh \(\frac{a^4+b^4+c^4+285}{48}\le2\left(a^4+b^4+c^4\right)\)
Áp dụng BĐT Cauchy 4 số: \(\hept{\begin{cases}a^4+b^4+b^4+1\ge4ab\\b^4+c^4+c^4+1\ge4bc^2\\c^4+a^4+a^4+1\ge4ca^2\end{cases}}\)
Cộng các BĐT trên ta thu được \(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=12\)
\(\Leftrightarrow a^4+b^4+c^4\ge3\)
=> đpcm
chứng minh:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12 ( gợi ý chứng minh nó chia hết cho 3 và 4)
\(\left(a+b+c\right)^2+12=4\left(a+b+c\right)\)\(+2\left(ab+bc+ac\right)=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac+12-4\left(a+b+c\right)-2\left(ab+bc+ac\right)=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)-2\left(ab+bc+ac\right)-4\left(a+b+c\right)+12=0\)
\(\Rightarrow a^2+b^2+c^2-4a-4b-4c+12=0\)
\(\Rightarrow\left(a^2-4a+4\right)+\left(b^2-4b+4\right)+\left(c^2-4c+4\right)=0\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\)
Ta co: \(\left(a-2\right)^2\ge0\forall a\)
\(\left(b-2\right)^2\ge0\forall b\)
\(\left(c-2\right)^2\ge0\forall c\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-2\right)^2=0\\\left(b-2\right)^2=0\\\left(c-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-2=0\\b-2=0\\c-2=0\end{cases}\Leftrightarrow}a=b=c=2}\left(\right)\)
(đpcm)
Mình nghĩ thế này nhé bạn!
(a + b + c )2 + 12 = 4 (a + b +c ) + 2(ab + bc +ac)
\(\Leftrightarrow\)a2 + b2 + c2 + 2ab + 2bc + 2ac + 12 = 4a + 4b + 4c + 2ab + 2ac + 2bc
\(\Leftrightarrow\) a2 + b2 + c2 - 4a - 4b -4c +12 = 0
\(\Leftrightarrow\)a2 - 4a + 4 + b2 - 4b + 4 + c2 - 4c + 4 =0
\(\Leftrightarrow\)( a -2 )2 + (b-2)2 + (c-2)2 = 0
ta có (a-2 )2 \(\ge0\forall a\)
(b - 2 )2 \(\ge0\forall b\)
(c - 2 )2 \(\ge0\forall c\)
mà (a-2)2 + (b-2)2 + (c-2)2 = 0
\(\Rightarrow\hept{\begin{cases}\left(a-2\right)^2=0\\\left(b-2\right)^2=0\\\left(c-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-2=0\\b-2=0\\c-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=2\\c=2\end{cases}\left(đpcm\right)}\)
vậy................... khi a=b = c =2
#mã mã#
a) ta có : a+b=4 => (a+b)2=16 =>a2+b2=16-2ab=16-4=12
=> \(a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)\)
=12((a2+b2)2-3a2b2=12(122-3.16)=1152
b) \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)=a^2+b^2+2ab\\ \Leftrightarrow a^2+b^2-2ab=0\\ \Leftrightarrow\left(a-b\right)^2=0\\ \Leftrightarrow a-b=0\Rightarrow a=b\)
Nếu a = 4 => b = 3 => a+b = 7
=> a>=4 , ab>= 12 thì a+b >= 7