K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2015

Bạn tự vẽ hình nhé! 

+) Chứng minh : tam giác ADB đồng dạng với tam giác ABF (g - g)

- Nối O với F. Kẻ OH | BF. 

Tam giác OBF cân tại O có OH là đường cao nên đồng thời là đường phân giác => góc BOH = góc BOF/2

Mặt khác, góc BOH = ABF (cùng phụ với góc OBF)

=> góc ABF = góc BOF/2   (*)

- Ta có: góc BDO + DBO = BOC (tính chất góc ngoài tam giác) => 2.BDO = BOC => góc BDO = góc BOC/2

Lại có: góc FDO + DFO = FOC (t/c góc ngoài tam giác) => 2.góc FDO = FOC => góc FDO = góc  FOC/ 2

=> góc BDO - FDO = góc BOC /2 - góc FOC/2 = góc BOF/2 

=> góc BDF = góc BOF/2 (**)

Từ (*)(**) => góc ABF = BDF mà góc FAB chung 

=>  Tam giác ADB đồng dạng với ABF (g- g) => \(\frac{AD}{AB}=\frac{AB}{AF}\) => AD.AF = AB2

+ Theo ý a => AI.AO = AD.AF => \(\frac{AI}{AD}=\frac{AF}{AO}\) Lại có góc OAD chung 

=> Tam giác AFI đồng dạng với tam giác AOD  (c - g- c)

=> góc AIF = ADO ( 2 góc tương ứng) 

 

7 tháng 1 2019

số liền trước 160 là

8 tháng 1 2019

Ôn tập Đường tròn

Ôn tập Đường tròn

Chúc bạn học tốt!!!

5 tháng 6 2019

Hình tự vẽ

Theo đề có AB là tiếp tuyến của (O) nên \(AB\perp OB\Rightarrow\widehat{ABO}=90^o\)

Trong tam giác vuông ABO có : OB = R ; OA = 2R nên cos \(\widehat{AOB}=\frac{OB}{OA}=\frac{1}{2}\Rightarrow\widehat{AOB}=60^o\)

Theo t/c 2 tiếp tuyến cắt nhau nên ta có AO là phân giác \(\widehat{BOC}\Rightarrow\widehat{AOC}=60^o\) 

mà \(\widehat{AOC}\)và \(\widehat{COD}\)kề bù nên suy ra \(\widehat{COD}=120^o\)