,\le,\ge\)" vào chỗ trống cho đúng : a) \(\left|a\right|..........0\) b) \(-\left|a..."> ,\le,\ge\)" vào chỗ trống cho đúng : a) \(\left|a\right|..........0\) b) \(-\left|a..."> ,\le,\ge\)" vào chỗ trống cho đúng : a) \(\left|a\right|..........0\) b) \(-\left|a..." />
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-a^2b-b^3>=0\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b>=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)>=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>=0\)(luôn đúng)

1 tháng 6 2020

ê

1 tháng 6 2020

bởi vì abc là  một số thập phân 

20 tháng 1 2020

Có: \(VT-VP=\frac{\left(b^2+c^2-2a^2\right)^2+\left(b-c\right)^2\left(\Sigma_{cyc}a^2+3\Sigma_{cyc}ab\right)}{2a+b+c}\ge0\)

Done!

4 tháng 5 2017

a) (−2).3.........(−2).5

b) 4.(−2).......(−7).(−2)

c) (−6)2+2........36+2

d)

4 tháng 5 2017

a)ta có:(-2).3=-6 ; (-2).5=-10

Vì -6>-10 nên (-2).3>(-2).5

b)Ta có:4.(-2)=-8 ; (-7).(-2)=14

vì -8<14 nên 4.(-2)<(-7).(-2)

c)Ta có:(-6)2+2=36+2=38 ; 36+2=38

Vì 38=38 nên (-6)2+2=36+2

d)Ta có:5.(-8)=-40 ; 135.(-8)=-1080

Vì -40>-1080 nên 5.(-8) > 135.(-8)

2 tháng 10 2019

Áp dụng bất đẳng thức \(4x^3+4y^3\ge\left(x+y\right)^3\) với x, y > 0, ta được:

\(4a^3+4b^3\ge\left(a+b\right)^3\)\(4b^3+4c^3\ge\left(b+c\right)^3\) ; \(4c^3+4a^3\ge\left(c+a\right)^3\).

Cộng từng vế 3 bất đẳng thức trên ta được:

\(4a^3+4b^3+4a^3+4b^3+4c^3+4c^3\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)

\(\Rightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)

=> đpcm.

23 tháng 9 2016

a/ Ta có : \(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\Leftrightarrow2\left(a^3+b^3\right)\ge a^3+b^3+ab^2+a^2b\)

\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Vậy bđt ban đầu được chứng minh.

b/ Đề sai

 

23 tháng 9 2016

Hoàng Lê Bảo Ngọc câu b em sửa lại đề chị làm jum em nhé 

\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

6 tháng 6 2020

Bất đẳng thức trên đúng với mọi số thực a, b, c. Ai có thể chứng minh?

AH
Akai Haruma
Giáo viên
30 tháng 5 2020

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$