,\le,\ge\)"  vào chỗ trống cho thích hợp : a) \(\left(-2\right).3.........\left(-2\right).5\) b) \(4.\left(..."> ,\le,\ge\)"  vào chỗ trống cho thích hợp : a) \(\left(-2\right).3.........\left(-2\right).5\) b) \(4.\left(..."> ,\le,\ge\)"  vào chỗ trống cho thích hợp : a) \(\left(-2\right).3.........\left(-2\right).5\) b) \(4.\left(..." />
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

a) (−2).3.........(−2).5

b) 4.(−2).......(−7).(−2)

c) (−6)2+2........36+2

d)

4 tháng 5 2017

a)ta có:(-2).3=-6 ; (-2).5=-10

Vì -6>-10 nên (-2).3>(-2).5

b)Ta có:4.(-2)=-8 ; (-7).(-2)=14

vì -8<14 nên 4.(-2)<(-7).(-2)

c)Ta có:(-6)2+2=36+2=38 ; 36+2=38

Vì 38=38 nên (-6)2+2=36+2

d)Ta có:5.(-8)=-40 ; 135.(-8)=-1080

Vì -40>-1080 nên 5.(-8) > 135.(-8)

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

30 tháng 4 2018

a) 4x -8 ≥ 3(3x-1)-2x +1

⇒4x -8 ≥7x -2

⇒4x -7x ≥ -2 +8

⇒-3x ≥ 6

⇒x≤-2

Vậy bpt có nghiệm là:{x|x≤-2}

30 tháng 4 2018

b) (x-3)(x+2)+(x+4)2≤ 2x (x+5)+4

⇔ x2+2x - 3x - 6 +x2 + 8x +16≤ 2x2 + 10x +4

⇔ x2 +2x - 3x + x2 + 8x - 2x2- 10x ≤ 4+6-16

⇔ -3x ≤ -6

⇔ x≥ 2

Vậy bpt có tập nghiệm là: {x|x≥2}

23 tháng 8 2018

a) 12 + (-8) > 9 + (-8)

b) 13 - 19 < 15 - 19

c) (-4)2 + 7 ≥ 16 + 7

d) 452 + 12 > 450 + 12

31 tháng 3 2019

a,>

b,<

c,\(=\)

d,>

a) \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(5x+5\right)^2\)

\(A=\left[\left(3x+1\right)-\left(5x+5\right)\right]^2\)

\(A=\left(-2x-4\right)^2\)

30 tháng 9 2017

A = (3x + 1)2 - 2(3x + 1)(5x + 5) + (5x + 5)2

= [(3x + 1)-(5x + 5)]2

= (3x + 1 - 5x - 5)2

= [(-2x) - 4]2

B = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

=> (3 - 1)B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

=>2B = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

= (34 - 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

= (38 - 1)(38 + 1)(316 +1)(332 + 1)

= (316 - 1)316 +1)(332 + 1)

= (332 - 1)(332 + 1)

= 364 - 1

vì 2B = 364 - 1

=> B = \(\dfrac{3^{64}-1}{2}\)

C = a2 + b2 + c2 + 2ab - 2ac - 2bc + a2 + b2 + c2 - 2ab + 2ac - 2bc - 2( b2 - 2bc + c2)

= 2a2 + 2b2 + 2c2 - 4bc - 2b2 + 4bc - 2c2

= 2a2

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) \(8 - \left( {x - 15} \right) = 2.\left( {3 - 2x} \right)\) 

\(8 - x + 15 = 6 - 4x\)

\( - x + 4x = 6 - 8 - 15\)

\(3x =  - 17\)

\(x = \left( { - 17} \right):3\)

\(x = \dfrac{{ - 17}}{3}\)

Vậy nghiệm của phương trình là \(x = \dfrac{{ - 17}}{3}\).

b) \( - 6\left( {1,5 - 2u} \right) = 3\left( { - 15 + 2u} \right)\)

\( - 9 + 12u =  - 45 + 6u\)

\(12u - 6u =  - 45 + 9\)

\(u = \left( { - 36} \right):6\)

\(6u =  - 36\)

\(u =  - 6\)

Vậy nghiệm của phương trình là \(u =  - 6\).

c) \({\left( {x + 3} \right)^2} - x\left( {x + 4} \right) = 13\)

\(\left( {{x^2} + 6x + 9} \right) - \left( {{x^2} + 4x} \right) = 13\)

\({x^2} + 6x + 9 - {x^2} - 4x = 13\)

\(\left( {{x^2} - {x^2}} \right) + \left( {6x - 4x} \right) = 13 - 9\)

\(2x = 4\)

\(x = 4:2\)

\(x = 2\)

Vậy nghiệm của phương trình là \(x = 2\).

d) \(\left( {y + 5} \right)\left( {y - 5} \right) - {\left( {y - 2} \right)^2} = 5\)

\(\left( {{y^2} - 25} \right) - \left( {{y^2} - 4y + 4} \right) = 5\)

\({y^2} - 25 - {y^2} + 4y - 4 = 5\)

\(\left( {{y^2} - {y^2}} \right) + 4y = 5 + 4 + 25\)

\(4y = 34\)

\(y = 34:4\)

\(y = \dfrac{{17}}{2}\)

Vậy nghiệm của phương trình là \(y = \dfrac{{17}}{2}\).

3: =(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)

=(5^4-1)(5^4+1)(5^8+1)(5^16+1)

=(5^8-1)(5^8+1)(5^16+1)

=(5^16-1)(5^16+1)

=5^32-1

4:

D=(4^4-1)(4^4+1)(4^8+1)*....*(4^64+1)

=(4^8-1)(4^8+1)*...*(4^64+1)

=...

=4^128-1

5: =(5^2-1)(5^2+1)(5^4+1)*...*(5^128+1)+(5^256-1)

=(5^4-1)(5^4+1)*...*(5^128+1)+5^256-1

=5^256-1+5^256-1

=2*5^256-2

7 tháng 7 2023

thsu là rất ngưỡng mộ anh ạ 🥹 em mấy lần off vì quá nhác nhưng lần nào ngoi lại lên cũng thấy anh cày chăm chỉ quá tr 😭