Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết : \(2ab+3bc+4ac=5abc\)Vì a,b,c là độ dài ba cạnh của một tam giác nên chia cả hai vế cho \(abc>0\)được :
\(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}=5\)
Áp dụng bất đẳng thức phụ sau : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( x,y là số dương. Dấu đẳng thức xảy ra <=> x = y )
(Bạn tự chứng minh bằng biến đổi tương đương nhé!)
Ta có : \(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{c+a-b}=\left(\frac{2}{c+a-b}+\frac{2}{b+c-a}\right)+\left(\frac{3}{c+a-b}+\frac{3}{a+b-c}\right)+\left(\frac{4}{a+b-c}+\frac{4}{b+c-a}\right)\)\(=2\left(\frac{1}{c+a-b}+\frac{1}{b+c-a}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\ge2.\frac{4}{c+a-b+b+c-a}+3.\frac{4}{c+a-b+a+b-c}+4.\frac{4}{a+b-c+b+c-a}=\frac{8}{2c}+\frac{12}{2a}+\frac{16}{2b}=\frac{4}{c}+\frac{6}{a}+\frac{8}{b}=2\left(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}\right)=10\)Vậy Min P = 10 \(\Leftrightarrow a=b=c=\frac{9}{5}\)
2ab+3bc+4ca=5abc
chia hai vế với abc
=>\(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}=5\)
=> tự giải tiếp
\(2ab+3bc+4ca=5abc\)
Do a,b,c lần lượt là độ dài 3 cạnh của tam giác
\(\Rightarrow\frac{2ab}{abc}+\frac{3bc}{abc}+\frac{4ca}{abc}=\frac{5abc}{abc}\Rightarrow\frac{2}{c}+\frac{3}{a}+\frac{4}{b}=5\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y >0 (Dấu "=" xảy ra khi x=y)
Ta có: \(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{a+c-b}\)
\(=\left(\frac{2}{b+c-a}+\frac{2}{c+a-b}\right)+\left(\frac{3}{c+a-b}+\frac{3}{a+b-c}\right)+\left(\frac{4}{a+b-c}+\frac{4}{b+c-a}\right)\)
\(=2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\)
\(\ge\frac{8}{2c}+\frac{12}{2a}+\frac{16}{2b}=2\left(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}\right)=10\)
Vậy ...
Từ giả thiết : \(abc=b+2c\)
\(\Leftrightarrow\frac{b+2c}{bc}=a\)
\(\Leftrightarrow\frac{1}{c}+\frac{2}{b}=a\)(1)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có : \(P=\frac{3}{b+c-a}+\frac{4}{c+a-b}+\frac{5}{a+b-c}\)
\(=\frac{1}{b+c-a}+\frac{1}{c+a-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)
\(\ge\frac{4}{2c}+2\cdot\frac{4}{2b}+3\cdot\frac{4}{2a}=\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)
Áp dụng (1) vào \(P\): \(\frac{2}{c}+\frac{4}{b}+\frac{6}{c}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)
Vậy \(Min_P=4\sqrt{3}\Leftrightarrow a=b=c=\sqrt{3}\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y},x>0,y>0\)
\(P=\frac{1}{b+c-a}+\frac{1}{a+c-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)
\(\Rightarrow P\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)
Từ giả thiết ta có: \(\frac{1}{c}+\frac{2}{b}=a\) nên \(\frac{2}{c}+\frac{4}{b}+\frac{6}{a}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)
Vậy giá trị nhỏ nhất của P=\(4\sqrt{3}\) đạt được khi \(a=b=c=\sqrt{3}\)
mối ràng buộc giữa a,b,c vì nếu a,b,c thuộc R và ko có mối liên hệ a,b,c thì ko có GTNN của nó
Đặt A=ab/(a+b) + bc/(b+c) + ac/(a+c)
Trước hết ta xét bất đẳng thức sau với x,y >0
(x+y)≥2√xy <=> (x+y)² ≥ 4xy <=> (x+y)≥(4xy)/(x+y)
ngịch đảo 2 vế ta có 1/(x+y) ≥ ¼(1/x+1/y)
Áp dụng cho bài toán ta có
ab/(a+b)≥¼ ab(1/a+1/b)=¼(a+b)
bc/(b+c) ≥¼(c+d)
ac/(a+c)≥¼(a+c)
Cộng 2 vế ta có A ≥¼(a+b+c+d+a+c)=½(a+b+c)
Nếu bạn cho a+b+c=m thì ta có mình A=m/2
#Làm_lại_cho_nhớ =)))
\(2ab+3ac+4bc=9abc\)
Vì a,b,c là 3 cạnh của tam giác\(\Rightarrow abc\ne0\)\(\Rightarrow\frac{4}{a}+\frac{3}{b}+\frac{2}{c}=9\)
Áp dụng BĐT Cauchy-Schwar dạng phân thức:
\(2\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}\right)\ge2.\frac{4}{2c}=\frac{4}{c}\)
Tương tự: \(3\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\ge\frac{6}{b}\),\(4\left(\frac{1}{a+b-c}+\frac{1}{a+c-b}\right)\ge\frac{8}{a}\)
\(\Rightarrow P\ge2.2\left(\frac{4}{a}+\frac{3}{b}+\frac{2}{c}\right)=36\)
\(''=''\Leftrightarrow a=b=c=1\)
Theo giả thiết có : \(abc\ne0\)chia hai vế của phương trình cho \(abc\)có : \(\frac{2ab+3bc+4ac}{abc}=\frac{5abc}{abc}\Leftrightarrow\frac{2}{a}+\frac{3}{b}+\frac{4}{c}=1\)
Xét : (ở tử của p tắc 7 = 4+3; 6= 4+2; 5=2+3 rồi nhóm nhân tử chung)
\(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{c+a-b}\)
\(=\frac{4}{a+b-c}+\frac{3}{a+b-c}+\frac{4}{b+c-a}+\frac{2}{b+c-a}+\frac{3}{c+a-b}+\frac{2}{c+a-b}\)
\(=4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)+3\left(\frac{1}{a+b-c}+\frac{1}{c+a-b}\right)+2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\)
Nếu có \(x,y\left(x>0,y>0\right)\)ta luôn có \(\left(x+y\right)^2\ge4xy\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
áp dụng vào P có
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
Cộng từng vế của 3 bất đẳng thức :
\(P\ge4.\frac{2}{b}+3.\frac{2}{a}+2.\frac{2}{c}=2\left(\frac{4}{b}+\frac{3}{a}+\frac{2}{c}\right)=2.5=10\)
Vậy \(P_{min}=10\)dấu "=" sảy ra khi \(a=b=c=\frac{9}{5}\)
trên đầu mình viết nhầm nhe chỗ tổng phân số bằng 5 chứ ko phải 1