Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(P=2a+3b+\frac{4}{a}+\frac{9}{b}=a+a+2b+b+\frac{4}{a}+\frac{9}{b}\)
\(=\left(a+2b\right)+\left(a+\frac{4}{a}\right)+\left(b+\frac{9}{b}\right)\)
\(\ge8+2\sqrt{a\times\frac{4}{a}}+2\sqrt{b\times\frac{9}{b}}\)( Cauchy )
\(=8+4+6=18\)
Đẳng thức xảy ra khi a = 2 ; b = 3
=> MinP = 18 <=> a = 2 ; b = 3
\(P=2a+3b+\frac{4}{a}+\frac{9}{b}\)
\(\Leftrightarrow P=\left(a+\frac{4}{a}\right)+\left(b+\frac{9}{b}\right)+a+2b\)
Áp dụng BĐT AM-GM ta có:
\(P\ge2.\sqrt{a.\frac{4}{a}}+2.\sqrt{b.\frac{9}{b}}+a+2b=2.2+2.3+a+2b\ge4+6+8=18\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a=\frac{4}{a}\\b=\frac{9}{b}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)
Vậy \(P_{min}=18\)\(\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)
Ta có:
\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)
Tương tụ ta có:
\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) ta có:
\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(=3+3-\frac{ab+bc+ca+3}{2}\)
\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)
Bìa này muốn làm cân 2 bước nha
Bước 1 ) CM BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
nó được CM như sau
áp dụng BĐT cô si ta đc
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3.\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9.\sqrt[3]{xyz.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9\)
dấu = xảy ra khi x=y=z
Bước 2 ) Theo CM bước 1 . áp dụng ta đc
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}=\frac{ab}{9}.\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}.\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
CM tương tự ta đc
\(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{2c}\right)\)
\(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{2a}\right)\)
cộng zế zới zế ta đc
\(A\le\frac{1}{9}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)
\(A\le\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}=\frac{6}{6}=1\)
=> MAx A=1 khi a=b=c=2
Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)
Cộng lại thì:
\(LHS\le a+b+c=3\)
Đẳng thức xảy ra tại a=b=c=1
Ta có:
sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)
Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)
có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)
Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)) \(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)
MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)
\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)
Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)
Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3