\(\frac{4a}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

Đặt: \(\hept{\begin{cases}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{cases}}\Rightarrow x;y;z>0\text{ và }\hept{\begin{cases}a=y+z\\b=z+x\\c=x+y\end{cases}}\)

Áp dụng AM - GM, ta có:

\(2P=4\left(\frac{y+z}{x}\right)+9\left(\frac{x+z}{y}\right)+16\left(\frac{x+y}{z}\right)\)

\(=\left(4\frac{y}{x}+9\frac{x}{y}\right)+\left(4\frac{z}{x}+16\frac{x}{z}\right)+\left(9\frac{x}{y}+16\frac{x}{z}\right)\ge12+16+24=52\Rightarrow P\ge26\)

\(Đ\text{T}\Leftrightarrow3z=4y=6x\)

23 tháng 5 2018

Phải là 9z/y + 16y/z chứ ban

6 tháng 12 2020

Đặt \(x=b+c-a,y=a+c-b,z=a+b-c\) . Khi đó x,y,z >0 và \(a=\frac{y+z}{2},b=\frac{x+z}{2},c=\frac{x+y}{2}\)

Vậy \(P=\frac{2y+2z}{x}+\frac{9x+9z}{2y}+\frac{8x+8y}{z}=\left(\frac{2y}{x}+\frac{9x}{2y}\right)+\left(\frac{2z}{x}+\frac{8x}{z}\right)+\left(\frac{9z}{2y}+\frac{8y}{z}\right)\)

\(\ge2\sqrt{9}+2\sqrt{16}+2\sqrt{36}\). Dấu '=' xảy ra khi:

\(\hept{\begin{cases}\frac{2y}{x}=\frac{9x}{2y}\\\frac{2z}{x}=\frac{8x}{z}\\\frac{9z}{2y}=\frac{8y}{z}\end{cases}\Leftrightarrow\hept{\begin{cases}4y^2=9x^2\\2z^2=8x^2\\9z^2=8y^2\end{cases}}}\Leftrightarrow\hept{\begin{cases}x,y,z>0\\2x=z\\2y=3x;3z=4y\end{cases}}\)

25 tháng 2 2020

(Trong đó a, b, c là độ dài 3 cạnh của 1 tam giác)

25 tháng 2 2020

Đặt \(x=b+c-a\) , \(y=a+c-b\), \(z=a+b-c\) thì x , y , z > 0

Ta có : \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{z+y}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

Vậy \(P=\frac{2y+2z}{x}+\frac{9z+9x}{2y}+\frac{8x+8y}{z}\)

\(=\left(\frac{2y}{x}+\frac{9x}{2y}\right)+\left(\frac{2z}{x}+\frac{8x}{z}\right)+\left(\frac{9z}{2y}+\frac{8y}{z}\right)\ge2\sqrt{9}+2\sqrt{16}+2\sqrt{36}=26\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\frac{2y}{x}=\frac{9x}{2y}\\\frac{2z}{x}=\frac{8x}{z}\\\frac{9z}{2y}=\frac{8y}{z}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y^2=9x^2\\2z^2=8x^2\\9z^2=8y^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{z}{2}\\y=\frac{3}{2}x\\z=\frac{4}{3}y\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của biểu thức P là 26 khi và chỉ khi \(\left\{{}\begin{matrix}x=\frac{z}{2}\\y=\frac{3}{2}x\\z=\frac{4}{3}y\end{matrix}\right.\)

Chúc bạn học tốt !!

1 tháng 6 2017

Theo giả thiết có : \(abc\ne0\)chia hai vế của phương trình cho \(abc\)có : \(\frac{2ab+3bc+4ac}{abc}=\frac{5abc}{abc}\Leftrightarrow\frac{2}{a}+\frac{3}{b}+\frac{4}{c}=1\)

Xét : (ở tử của p  tắc 7 = 4+3; 6= 4+2; 5=2+3 rồi nhóm nhân tử chung)

\(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{c+a-b}\)

\(=\frac{4}{a+b-c}+\frac{3}{a+b-c}+\frac{4}{b+c-a}+\frac{2}{b+c-a}+\frac{3}{c+a-b}+\frac{2}{c+a-b}\)

\(=4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)+3\left(\frac{1}{a+b-c}+\frac{1}{c+a-b}\right)+2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\)

Nếu có \(x,y\left(x>0,y>0\right)\)ta luôn có \(\left(x+y\right)^2\ge4xy\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

áp dụng vào P có

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

Cộng từng vế của 3 bất đẳng thức :

\(P\ge4.\frac{2}{b}+3.\frac{2}{a}+2.\frac{2}{c}=2\left(\frac{4}{b}+\frac{3}{a}+\frac{2}{c}\right)=2.5=10\)

Vậy \(P_{min}=10\)dấu "=" sảy ra khi \(a=b=c=\frac{9}{5}\)

1 tháng 6 2017

trên đầu mình viết nhầm nhe chỗ tổng phân số bằng 5 chứ ko phải 1 

24 tháng 12 2015

Ban nen cho phan khac chu khong phai phan giai tri

17 tháng 2 2016

GTNN=26 NHA BẠN

1 tháng 9 2015

Đặt \(b+c-a=2x,c+a-b=2y,a+b-c=2z\to x,y,z>0\)  v

à thỏa mãn \(a=y+z,b=z+x,c=x+y.\) Đặt \(S=2VT\)  (hai lần vế trái của bất đẳng thức)  thì ta có

\(S=\frac{4\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{y}+\frac{16\left(x+y\right)}{z}=\left(\frac{4y}{x}+\frac{9x}{y}\right)+\left(\frac{4z}{x}+\frac{16x}{z}\right)+\left(\frac{9z}{y}+\frac{16y}{z}\right)\)

Theo bất đẳng thức Cô-Si ta được

\(S\ge2\sqrt{\frac{4y}{x}\cdot\frac{9x}{y}}+2\sqrt{\frac{4z}{x}\cdot\frac{16x}{z}}+2\sqrt{\frac{9z}{y}\cdot\frac{16y}{z}}=2\cdot6+2\cdot8+2\cdot12=2\cdot26=52.\)

Suy ra \(VT=\frac{S}{2}\ge\frac{52}{2}=26\).   (ĐPCM)


 

1 tháng 11 2019

đề sai ở mẫu cuối nhé

đặt b + c - a = x ; a + c - b = y ; a + b - c = z

\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)

\(\Rightarrow P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{9z}{2y}+\frac{8y}{z}\)

\(\ge6+8+12=26\)

1 tháng 11 2019

bài này dấu ' =" giải ra mệt lắm nên bạn tự giải